Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 945: 174068, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897468

RESUMEN

The monosaccharide anhydrides levoglucosan, mannosan, and galactosan are known as 'fire sugars' as they are powerful proxies used to trace fire events. Despite their increasing use, their application is not completely understood, especially in the context of tracing past fire events using sediment samples. There are many uncertainties about fire sugar formation, partitioning, transport, complexation, and stability along all stages of the source-to-sink pathway. While these uncertainties exist, the efficacy of fire sugars as fire tracers remains limited. This study compared high-resolution fire sugar fluxes in freshwater sediment cores to known fire records in Tasmania, Australia. Past fire events correlated with fire sugar flux increases down-core, with the magnitude of the flux inversely proportional to the distance of the fires from the study site. For the first time, fire sugar ratios (levoglucosan/mannosan, L/M) in aerosols were compared with those in sediments from the same time-period. The L/M ratio in surface sediments (1.42-2.58) were significantly lower than in corresponding aerosols (5.08-15.62). We propose two hypotheses that may explain the lower average L/M of sediments. Firstly, the degradation rate of levoglucosan is higher than mannosan in the water column, sediment-water interface, and/or sediment. Secondly, the L/M ratio of non-atmospheric emissions during fires may be lower than that of atmospheric emissions from the same fire. Due to the uncertainties about transport partitioning (atmospheric versus non-atmospheric emissions) and fire sugar degradation along all stages of the source-to-sink pathway, we advise caution when inferring vegetation type (e.g. softwood, hardwood, or grasses) based purely on fire sugar ratios in sediments (e.g. L/M ratio). Future investigations are required to increase the efficacy of fire sugars as a complimentary, or standalone, fire tracer in sediments.

2.
Anal Methods ; 15(21): 2631-2640, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199214

RESUMEN

The ability to trace current and past biomass burning events is important for understanding the links between human activity, fire frequency, and climate. One method of tracing biomass burning is to measure the concentrations of certain monosaccharides anhydrides (MAs), specifically levoglucosan (LEV) and its isomers, mannosan (MAN) and galactosan (GAL), which are products of cellulose and hemicellulose pyrolysis. This work presents a simple extraction method allowing for the rapid, sensitive, and selective determination of MAs in sediments. MAs detection was performed using suppressed ion chromatography with electrospray - triple-stage quadrupole tandem mass spectrometry (IC-TSQ-MS). The extraction method involves ultrasound probe sonication using water as the solvent. Extraction time, amplitude, and sonication mode were optimised. Recoveries higher than 86% for all MAs tested were achieved by applying 70% amplitude in continuous mode for 60 s. Analytical performance of the method included instrumental LODs of 0.10, 0.12 and 0.50 µg L-1 for LEV, MAN and GAL, respectively. No carryover issues, no matrix effect and no co-elution of targeted MAs with other sugars likely present in sediments samples were observed. The developed extraction method was further validated by the analysis of LEV and MAN in NIST® 1649b urban dust reference material and the resulting concentrations were in excellent agreement with previously reported values. MAs quantification in 70 lake sediment samples were carried out with concentrations found to range from 0.009 to 0.390 µg g-1 for LEV and from 0.009 to 0.194 µg g-1 for MAN. Plotting MAs concentrations versus approximate sediment age allowed the reconstruction of recent fire events impacting two locations in the Central Highlands of Tasmania, Australia.


Asunto(s)
Glucosa , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Glucosa/análisis , Cromatografía/métodos , Monosacáridos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA