Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(32): 38391-38402, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37527285

RESUMEN

The high ionic conductivity and good oxidation stability of halide-based solid electrolytes evoke strong interest in this class of materials. Nonetheless, the superior oxidative stability compared to sulfides comes at the expense of limited stability toward reduction and instability against metallic lithium anodes, which hinders their practical use. In this context, the gradual fluorination of Li2ZrCl6-xFx (0 ≤ x ≤ 1.2) is proposed to enhance the stability toward lithium-metal anodes. The mechanochemically synthesized fluorine-substituted compounds show the expected distorted local structure (M2-M3 site disorder) and significant change in the overall Li-ion migration barrier. Theoretical calculations reveal an approximate minimum energy path for Li2ZrCl6-xFx (x = 0 and 0.5) with an increase in the Li+ migration energy barrier for Li2ZrCl5.5F0.5 in comparison to Li2ZrCl6. However, it is found that the fluorine-substituted compound exhibits substantially lower polarization after 800 h of lithium stripping and plating owing to enhanced interfacial stability against the lithium metal, as revealed by density functional theory and ex situ X-ray photoelectron spectroscopy, thanks to the formation of a fluorine-rich passivating interphase.

2.
ACS Appl Mater Interfaces ; 15(21): 25462-25472, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204404

RESUMEN

Rechargeable lithium-metal batteries (LMBs) are anticipated to enable enhanced energy densities, which can be maximized when minimizing the amount of excess lithium in the cell down to zero, also referred to as "zero excess" LMBs. In this case, the only source of lithium is the positive electrode active material─just like in lithium-ion batteries. However, this requires the fully reversible deposition of metallic lithium, i.e., the Coulombic efficiency (CE) approaching 100%. Herein, the lithium plating from ionic liquid-based electrolytes, composed of N-butyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the conducting salt, on nickel current collectors is investigated via a comprehensive set of electrochemical techniques coupled with operando and in situ atomic force microscopy and ex situ X-ray photoelectron spectroscopy. The investigation involves the use of fluoroethylene carbonate (FEC) as an electrolyte additive. The results show that an elevated LiTFSI concentration leads to a lower overpotential for the lithium nucleation and a more homogeneous deposition. The incorporation of FEC results in a further lowered overpotential and a stabilized solid electrolyte interphase, enabling a substantially enhanced CE.

3.
ACS Appl Mater Interfaces ; 15(17): 20987-20997, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37079779

RESUMEN

To increase the energy density of today's lithium batteries, it is necessary to develop an anode with higher energy density than graphite or carbon/silicon composites. Hence, research on metallic lithium has gained a steadily increasing momentum. However, the severe safety issues and poor Coulombic efficiency of this highly reactive metal hinder its practical application in lithium-metal batteries (LMBs). Herein, the development of an artificial interphase is reported to enhance the reversibility of the lithium stripping/plating process and suppress the parasitic reactions with the liquid organic carbonate-based electrolyte. This artificial interphase is spontaneously formed by an alloying reaction-based coating, forming a stable inorganic/organic hybrid interphase. The accordingly modified lithium-metal electrodes provide substantially improved cycle life to symmetric Li||Li cells and high-energy Li||LiNi0.8Co0.1Mn0.1O2 cells. For these LMBs, 7 µm thick lithium-metal electrodes have been employed while applying a current density of 1.0 mA cm-2, thus highlighting the great potential of this tailored interphase.

4.
Adv Sci (Weinh) ; 9(18): e2105234, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35466540

RESUMEN

Solid-state batteries (SSBs) are promising candidates to significantly exceed the energy densities of today's state-of-the-art technology, lithium-ion batteries (LIBs). To enable this advancement, optimizing the solid electrolyte (SE) is the key. ß-Li3 PS4 (ß-LPS) is the most studied member of the Li2 S-P2 S5 family, offering promising properties for implementation in electric vehicles. In this work, the microstructure of this SE and how it influences the electrochemical performance are systematically investigated. To figure this out, four batches of ß-LPS electrolyte with different particle size, shape, and porosity are investigated in detail. It is found that differences in pellet porosities mostly originate from single-particle intrinsic features and less from interparticle voids. Surprisingly, the ß-LPS electrolyte pellets with the highest porosity and larger particle size not only show the highest ionic conductivity (up to 0.049 mS cm-1 at RT), but also the most stable cycling performance in symmetrical Li cells. This behavior is traced back to the grain boundary resistance. Larger SE particles seem to be more attractive, as their grain boundary contribution is lower than that of denser pellets prepared using smaller ß-LPS particles.

5.
ChemSusChem ; 15(10): e202200038, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35294795

RESUMEN

To tackle the poor chemical/electrochemical stability of Li1+x Alx Ti2-x (PO4 )3 (LATP) against Li and poor electrode|electrolyte interfacial contact, a thin poly[2,3-bis(2,2,6,6-tetramethylpiperidine-N-oxycarbonyl)norbornene] (PTNB) protection layer is applied with a small amount of ionic liquid electrolyte (ILE). This enables study of the impact of ILEs with modulated composition, such as 0.3 lithium bis(fluoromethanesulfonyl)imide (LiFSI)-0.7 N-butyl-N-methylpyrrolidinium bis(fluoromethanesulfonyl)imide (Pyr14 FSI) and 0.3 LiFSI-0.35 Pyr14 FSI-0.35 N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14 TFSI), on the interfacial stability of PTNB@Li||PTNB@Li and PTNB@Li||LiNi0.8 Co0.1 Mn0.1 O2 cells. The addition of Pyr14 TFSI leads to better thermal and electrochemical stability. Furthermore, Pyr14 TFSI facilitates the formation of a more stable Li|hybrid electrolyte interface, as verified by the absence of lithium "pitting corrosion islands" and fibrous dendrites, leading to a substantially extended lithium stripping-plating cycling lifetime (>900 h). Even after 500 cycles (0.5C), PTNB@Li||LiNi0.8 Co0.1 Mn0.1 O2 cells achieve an impressive capacity retention of 89.1 % and an average Coulombic efficiency of 98.6 %. These findings reveal a feasible strategy to enhance the interfacial stability between Li and LATP by selectively mixing different ionic liquids.

6.
ACS Appl Mater Interfaces ; 12(17): 20012-20025, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32251596

RESUMEN

All-solid-state batteries with solid electrolytes having ionic conductivities in the range of those of liquid electrolytes have gained much interest as safety is still a major issue for applications. Meanwhile, lithium metal seems to be the anode material of choice to face the demand for higher capacities. Still, the main challenges that come with the use of a lithium metal anode, i.e., formation and growth of lithium dendrites, are still not understood very well. This work focuses on the reasons of the lifetime behavior of lithium symmetric cells with the solid electrolyte Li6PS5Cl and lithium electrode. In particular, the voltage increases during the application of a constant current density are investigated. The interface between the lithium metal electrode and the solid electrolyte is analyzed by X-ray photoelectron spectroscopy, and the resistance changes of each electrode during stripping and plating are investigated by impedance spectroscopy on a three-electrode cell. A main factor for the lifetime influenced by lithium dendrite formation and growth is the buildup of a lithium vacancy gradient, leading to voids which decrease the interface area and therefore increase the local current density. Additionally, those lithium vacancies in lithium metal represent a limitation for conductivity rather than migration in solid electrolyte. Further experiments indicate that the seedlike plating behavior of lithium also plays a key role in increased local current density and therefore decreased lifetime. Plating of only a small amount of lithium leads to small areas of well-connected interfaces, resulting in high local current density. A medium amount of plated lithium leads to larger areas of interface between lithium and electrolyte, balancing the current density distribution. In contrast, a high amount of repeatedly deposited lithium leads to lithium seed plating on top of already plated lithium. Those seed spots grown on top represent a better interface connection, which again leads to higher local current densities at those spots and therefore results in shorter lifetimes due to short circuits caused by lithium dendrites.

7.
RSC Adv ; 10(2): 1114-1119, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35494436

RESUMEN

All-solid-state batteries (SSBs) are attracting widespread attention as next-generation energy storage devices, potentially offering increased power and energy densities and better safety than liquid electrolyte-based Li-ion batteries. Significant research efforts are currently underway to develop stable and high-performance bulk-type SSB cells by optimizing the cathode microstructure and composition, among others. Electronically conductive additives in the positive electrode may have a positive or negative impact on cyclability. Herein, it is shown that for high-loading (pelletized) SSB cells using both a size- and surface-tailored Ni-rich layered oxide cathode material and a lithium thiophosphate solid electrolyte, the cycling performance is best when low-surface-area carbon black is introduced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA