Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 9: 834, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123127

RESUMEN

Butyrylcholinesterase (BChE) is considered as an efficient stoichiometric antidote against organophosphorus (OP) poisons. Recently we utilized combination of calculations and ultrahigh-throughput screening (uHTS) to select BChE variants capable of catalytic destruction of OP pesticide paraoxon. The purpose of this study was to elucidate the molecular mechanism underlying enzymatic hydrolysis of paraoxon by BChE variants using hybrid quantum mechanical/molecular mechanical (QM/MM) calculations. Detailed analysis of accomplished QM/MM runs revealed that histidine residues introduced into the acyl-binding loop are always located in close proximity with aspartate residue at position 70. Histidine residue acts as general base thus leading to attacking water molecule activation and subsequent SN2 inline hydrolysis resulting in BChE reactivation. This combination resembles canonical catalytic triad found in active centers of various proteases. Carboxyl group activates histidine residue by altering its pKa, which in turn promotes the activation of water molecule in terms of its nucleophilicity. Observed re-protonation of catalytic serine residue at position 198 from histidine residue at position 438 recovers initial configuration of the enzyme's active center, facilitating next catalytic cycle. We therefore suggest that utilization of uHTS platform in combination with deciphering of molecular mechanisms by QM/MM calculations may significantly improve our knowledge of enzyme function, propose new strategies for enzyme design and open new horizons in generation of catalytic bioscavengers against OP poisons.

2.
Proc Natl Acad Sci U S A ; 114(10): 2550-2555, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28202731

RESUMEN

Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.


Asunto(s)
Butirilcolinesterasa/química , Ensayos Analíticos de Alto Rendimiento/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Paraoxon/química , Análisis de la Célula Individual/instrumentación , Antibiosis , Biodiversidad , Comunicación Celular , Emulsiones , Citometría de Flujo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Aceites Volátiles/química , Fenotipo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Agua/química
3.
Sci Adv ; 2(10): e1501695, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27774510

RESUMEN

In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.


Asunto(s)
Anticuerpos Monoclonales , Sitios de Unión de Anticuerpos , Simulación por Computador , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Robótica
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 708-19, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24598740

RESUMEN

The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.95 Šresolution. It was found that compared with A17κ the active centre of A17λ is displaced, stabilized and made more rigid owing to interdomain interactions involving the CDR loops from the VL and VH domains. These VL/VH domains also have lower mobility, as deduced from the atomic displacement parameters of the crystal structure. The antibody elbow angle is decreased to 126° compared with 138° in A17κ. These structural differences account for the subtle changes in catalytic efficiency and thermodynamic parameters determined with two organophosphate ligands, as well as in the affinity for peptide substrates selected from a combinatorial cyclic peptide library, between the A17κ and A17λ variants. The data presented will be of interest and relevance to researchers dealing with the design of antibodies with tailor-made functions.


Asunto(s)
Regiones Constantes de Inmunoglobulina/química , Región de Cambio de la Inmunoglobulina , Cadenas kappa de Inmunoglobulina/química , Cadenas lambda de Inmunoglobulina/química , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Cristalización , Cristalografía por Rayos X , Humanos , Regiones Constantes de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/genética , Proteínas Recombinantes/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA