Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047685

RESUMEN

To vectorize drug delivery from electrospun-produced scaffolds, we introduce a thin outer drug retention layer produced by electrospinning from activated carbon nanoparticles (ACNs)-enriched polycaprolacton (PCL) suspension. Homogeneous or coaxial fibers filled with ACNs were produced by electrospinning from different PCL-based suspensions. Stable ACN suspensions were selected by sorting through solvents, stabilizers and auxiliary components. The ACN-enriched scaffolds produced were characterized for fiber diameter, porosity, pore size and mechanical properties. The scaffold structure was analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that ACNs were mainly coated with a polymer layer for both homogeneous and coaxial fibers. Drug binding and release from the scaffolds were tested using tritium-labeled sirolimus. We showed that the kinetics of sirolimus binding/release by ACN-enriched scaffolds was determined by the fiber composition and differed from that obtained with a free ACN. ACN-enriched scaffolds with coaxial and homogeneous fibers had a biocompatibility close to scaffold-free AC, as was shown by the cultivation of human gingival fibroblasts and umbilical vein cells on scaffolds. The data obtained demonstrated that ACN-enriched scaffolds had good physico-chemical properties and biocompatibility and, thus, could be used as a retaining layer for vectored drug delivery.


Asunto(s)
Carbón Orgánico , Andamios del Tejido , Humanos , Andamios del Tejido/química , Poliésteres/química , Polímeros/química , Sirolimus , Ingeniería de Tejidos/métodos
2.
Polymers (Basel) ; 12(8)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759856

RESUMEN

A stenting procedure aimed at blood flow restoration in stenosed arteries significantly improves the efficiency of vascular surgery. However, the current challenge is to prevent neointimal growth, which reduces the vessel lumen, in the stented segments in the long run. We tested in vivo drug-eluting coating applied by electrospinning to metal vascular stents to inhibit the overgrowth of neointimal cells via both the drug release and mechanical support of the vascular wall. The blend of polycaprolactone with human serum albumin and paclitaxel was used for stent coating by electrospinning. The drug-eluting stents (DESs) were placed using a balloon catheter to the rabbit common iliac artery for 1, 3, and 6 months. The blood flow rate was ultrasonically determined in vivo. After explantation, the stented arterial segment was visually and histologically examined. Any undesirable biological responses (rejection or hemodynamically significant stenosis) were unobservable in the experimental groups. DESs were less traumatic and induced weaker neointimal growth; over six months, the blood flow increased by 37% versus bare-metal stents, where it increased by at least double the rate. Thus, electrospun-coated DESs demonstrate considerable advantages over the bare-metal variants.

3.
Materials (Basel) ; 12(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817735

RESUMEN

Endothelization of the luminal surface of vascular grafts is required for their long-term functioning. Here, we have cultivated human endothelial cells (HUVEC) on different 3D matrices to assess cell proliferation, gene expression and select the best substrate for endothelization. 3D matrices were produced by electrospinning from solutions of poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone (PCL), and blends of PCL with gelatin (Gl) in hexafluoroisopropanol. Structure and surface properties of 3D matrices were characterized by SEM, AFM, and sessile drop analysis. Cell adhesion, viability, and proliferation were studied by SEM, Alamar Blue staining, and 5-ethynyl-2'-deoxyuridine (EdU) assay. Gene expression profiling was done on an Illumina HiSeq 2500 platform. Obtained data indicated that 3D matrices produced from PCL with Gl and treated with glutaraldehyde provide the most suitable support for HUVEC adhesion and proliferation. Transcriptome sequencing has demonstrated a minimal difference of gene expression profile in HUVEC cultivated on the surface of these matrices as compared to tissue culture plastic, thus confirming these matrices as the best support for endothelization.

4.
Materials (Basel) ; 11(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400260

RESUMEN

Paclitaxel is a natural, highly lipophilic anti proliferative drug widely used in medicine. We have studied the release of tritium-labeled paclitaxel (³H-PTX) from matrices destined for the coating of vascular stents and produced by the electrospinning method from the solutions of polycaprolactone (PCL) with paclitaxel (PTX) in hexafluoisopropanol (HFIP) and/or solutions of PCL with PTX and human serum albumin (HSA) in HFIP or HIFP-dimethyl sulphoxide (DMSO) blend. The release of PTX has been shown to depend on the composition of electrospinning solution, as well as the surrounding medium, particularly the concentration of free PTX and PTX-binding biomolecules present in human serum. It was shown that 3D matrices can completely release PTX without weight loss. Two-phase PTX release from optimized 3D matrices was obtained: ~27% of PTX was released in the first day, another 8% were released over the next 26 days. Wherein ~2.8%, ~2.3%, and ~0.25% of PTX was released on day 3, 9, and 27, respectively. Considering PTX toxicity, the rate of its diffusion through the arterial wall, and the data obtained the minimum cytostatic dose of the drug in the arterial wall will be maintained for at least three months.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA