Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Microbiol ; 44(2): 613-27, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24294261

RESUMEN

Environments contaminated with heavy metals negatively impact the living organisms. Ectomycorrhizal fungi have shown important role in these impacted sites. Thus, this study aimed to evaluate the copper-resistance of ectomycorrhizal fungi isolates Pisolithus microcarpus - UFSC-Pt116; Pisolithus sp. - UFSC-PT24, Suillus sp. - UFSM RA 2.8 and Scleroderma sp. - UFSC-Sc124 to different copper doses in solid and liquid media. The copper doses tested were: 0.00, 0.25, 0.5, 0.75, 1.0 and 1.25 mmol L(-1) in the solid medium and 0.00, 0.32, 0.64 and 0.96 mmol L(-1) in the liquid medium. Copper was amended as copper sulphate in order to supplement the culture medium MNM at pH 4.8, with seven replicates to each fungus-dose combination. The fungal isolates were incubated for 30 days at 28 °C. UFSC-Pt116 showed high copper-resistance such as accessed by CL50 determinations (concentration to reduce 50% of the growth) as while as UFSC-PT24 displayed copper-resistance mechanism at 0.50 mmol L(-1) in solid medium. The UFSC-PT24 and UFSC-Sc124 isolates have increased copper-resistance in liquid medium. The higher production of extracellular pigment was detected in UFSC-Pt116 cultures. The UFSC-Pt116 and UFSC-PT24 isolates showed higher resistance for copper and produced higher mycelium biomass than the other isolates. In this way, the isolates UFSG-Pt116 and UFSC-PT24 can be important candidates to survive in copper-contaminated areas, and can show important role in plants symbiosis in these contaminated sites.


Asunto(s)
Basidiomycota/efectos de los fármacos , Cobre/toxicidad , Farmacorresistencia Fúngica , Micorrizas/efectos de los fármacos , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Temperatura , Factores de Tiempo
2.
Braz. j. microbiol ; 44(2): 619-627, 2013.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1469597

RESUMEN

Environments contaminated with heavy metals negatively impact the living organisms. Ectomy­corrhizal fungi have shown important role in these impacted sites. Thus, this study aimed to evaluate the copper-resistance of ectomycorrhizal fungi isolates Pisolithus microcarpus - UFSC-Pt116, Pisolithus sp. - UFSC-PT24, Suillus sp. - UFSM RA 2.8 and Scleroderma sp. - UFSC-Sc124 to different copper doses in solid and liquid media. The copper doses tested were: 0.00, 0.25, 0.5, 0.75, 1.0 and 1.25 mmol L-1 in the solid medium and 0.00, 0.32, 0.64 and 0.96 mmol L-1 in the liquid medium. Copper was amended as copper sulphate in order to supplement the culture medium MNM at pH 4.8, with seven replicates to each fungus-dose combination. The fungal isolates were incubated for 30 days at 28 °C. UFSC-Pt116 showed high copper-resistance such as accessed by CL50 determinations (concentration to reduce 50% of the growth) as while as UFSC-PT24 displayed copper-resistance mechanism at 0.50 mmol L-1 in solid medium. The UFSC-PT24 and UFSC-Sc124 isolates have increased copper-resistance in liquid medium. The higher production of extracellular pigment was detected in UFSC-Pt116 cultures. The UFSC-Pt116 and UFSC-PT24 isolates showed higher resistance for copper and produced higher mycelium biomass than the other isolates. In this way, the isolates UFSG-Pt116 and UFSC-PT24 can be important candidates to survive in copper-contaminated areas, and can show important role in plants symbiosis in these contaminated sites.


Asunto(s)
Biodegradación Ambiental , Micorrizas , Hongos , Pigmentos Biológicos
3.
Braz. j. microbiol ; 44(2): 613-622, 2013. graf, tab
Artículo en Inglés | LILACS | ID: lil-688572

RESUMEN

Environments contaminated with heavy metals negatively impact the living organisms. Ectomy­corrhizal fungi have shown important role in these impacted sites. Thus, this study aimed to evaluate the copper-resistance of ectomycorrhizal fungi isolates Pisolithus microcarpus - UFSC-Pt116; Pisolithus sp. - UFSC-PT24, Suillus sp. - UFSM RA 2.8 and Scleroderma sp. - UFSC-Sc124 to different copper doses in solid and liquid media. The copper doses tested were: 0.00, 0.25, 0.5, 0.75, 1.0 and 1.25 mmol L-1 in the solid medium and 0.00, 0.32, 0.64 and 0.96 mmol L-1 in the liquid medium. Copper was amended as copper sulphate in order to supplement the culture medium MNM at pH 4.8, with seven replicates to each fungus-dose combination. The fungal isolates were incubated for 30 days at 28 °C. UFSC-Pt116 showed high copper-resistance such as accessed by CL50 determinations (concentration to reduce 50% of the growth) as while as UFSC-PT24 displayed copper-resistance mechanism at 0.50 mmol L-1 in solid medium. The UFSC-PT24 and UFSC-Sc124 isolates have increased copper-resistance in liquid medium. The higher production of extracellular pigment was detected in UFSC-Pt116 cultures. The UFSC-Pt116 and UFSC-PT24 isolates showed higher resistance for copper and produced higher mycelium biomass than the other isolates. In this way, the isolates UFSG-Pt116 and UFSC-PT24 can be important candidates to survive in copper-contaminated areas, and can show important role in plants symbiosis in these contaminated sites.


Asunto(s)
Basidiomycota/efectos de los fármacos , Cobre/toxicidad , Farmacorresistencia Fúngica , Micorrizas/efectos de los fármacos , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Temperatura , Factores de Tiempo
4.
Mycorrhiza ; 18(8): 437-442, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18695983

RESUMEN

Chondrogaster angustisporus is a hypogeous ectomycorrhizal fungus described from fruiting bodies collected under Eucalyptus spp. in Brazil, Uruguay, and Australia. Due to its efficiency in promoting plant growth, we decided to characterize this fungus through mycorrhizal morphotyping and internal transcribed spacer (ITS) (rRNA) sequencing. DNA extracted from mycelium was amplified and sequenced using specific primers. Mycorrhizas were obtained aseptically and analyzed in terms of macroscopic and microscopic characteristics. When compared with other fungal DNA sequences available in the NBCI GenBank, the C. angustisporus sequence presented the highest similarity to an uncultured ectomycorrhizal fungus from the Seychelles. It also shows significant similarities to Gomphus, Ramaria, and Hysterangium species supporting the classification of Chondrogaster in the subclass Phallomycetidae in the gomphoid-phalloid group. The mycorrhizas were characterized by a narrow mantle with a single tissue layer densely arranged and organized as a net synenchyma with elongated hyphae. Interhyphal spaces were seen only in the external region where hyphae were more loosely organized. Bottle-shaped cystidia with bent necks were observed on the surface of the mantle. Emanating hyphae were larger than those in the mantle and presented a granular content. At regular intervals the hyphae were divided by septa with clamp connections. The Hartig net was of the common type, with typical palmetti and single hyphal rows and limited to the epidermal layer. The mycorrhizal description and the ITS sequence obtained are useful tools to identify this ectomycorrhizal fungus in culture and in association with Eucalyptus roots.


Asunto(s)
Basidiomycota/clasificación , Basidiomycota/genética , Eucalyptus/microbiología , Micorrizas/clasificación , Micorrizas/genética , ADN Espaciador Ribosómico/genética , Datos de Secuencia Molecular , Micorrizas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA