Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 150(22): 224504, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31202218

RESUMEN

The quest for a possible liquid-liquid coexistence line in supercooled water below its homogeneous nucleation temperature is faced by confining water within a porous silica substrate (MCM-41). This system is investigated by synchrotron radiation infrared spectroscopy, exploring both the intramolecular and the intermolecular vibrational dynamics, in the temperature range from ambient down to ∼120 K, along several isobaric paths between 0.7 kbar and 3.0 kbar. Upon lowering the temperature, the OH-stretching band shows that the intramolecular vibrational dynamics continuously evolves from predominantly liquidlike to predominantly icelike. An abrupt change in the line shape of the intermolecular vibrational band between 220 K and 240 K, depending on the pressure, is the signature of nucleation of ice within the MCM-41 pores. These findings do not support the presence of two liquid phases and provide evidence for the coexistence of liquid water and ice in water confined in MCM-41.

2.
Phys Chem Chem Phys ; 21(9): 4931-4938, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30758013

RESUMEN

We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around Q = 1.7 Å-1), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around Q = 0.2 Å-1), and the so-called Porod scattering at smaller Q, which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different Q regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water.

3.
Biochim Biophys Acta ; 1838(10): 2646-55, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25017801

RESUMEN

Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques. Electro-rotation measurements pointed out that the interaction of cationic liposomes with the cell membrane alters significantly its dielectric and geometric parameters. This alteration, being accompanied by significant changes of the membrane surface roughness as measured by atomic force microscopy, suggests that the interaction with the liposomes causes locally substantial modifications to the structure and morphology of the cell membrane. However, the results of electrophoretic mobility (ζ-potential) experiments show that upon the interaction the electric charge exposed on the cell surface does not vary significantly, pointing out that the simple adhesion on the cell surface of the cationic liposomes or their fusion with the membrane is to be ruled out. As a matter of fact, confocal microscopy images directly demonstrated the penetration of the liposomes inside the cell and their diffusion within the cytoplasm. Electro-rotation experiments performed in the presence of endocytosis inhibitors suggest that the internalization is mediated by, at least, one specific pathway. Noteworthy, the liposome uptake by the cell does not cause a significant biological damage.


Asunto(s)
Membrana Celular/química , Dimiristoilfosfatidilcolina/química , Liposomas/química , Fusión de Membrana , Compuestos de Amonio Cuaternario/química , Tensoactivos/química , Animales , Línea Celular , Membrana Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Ratones
4.
J Nanosci Nanotechnol ; 13(8): 5434-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23882775

RESUMEN

A set of epoxy resin composites filled with 0.25-2.0 wt.% of commercially available ENSACO carbon black (CB) of high and low surface area (CBH and CBL respectively) has been produced. The results of broadband dielectric spectroscopy of manufactured CB/epoxy below the percolation threshold in broad temperature (200 K to 450 K) and frequency (20 Hz to 1 MHz) ranges are reported. The dielectric properties of composites below the percolation threshold are mostly determined by alpha relaxation in pure polymer matrix. The glass transition temperature for CB/epoxy decreases in comparison with neat epoxy resin due to the extra free volume at the polymer-filler interface. At room temperature, the dielectric permittivity is higher for epoxy loaded with CBH additives. In contrast, at high temperature, the electrical conductivity was found to be higher for composites with CBL embedded. The established influence of the CB surface area on the broadband dielectric characteristics can be exploited for the production of effective low-cost antistatic paints and coatings working at different temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA