Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 89(10): 5174-5178, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28467072

RESUMEN

The separation of hazardous metals from contaminated sources is commonly achieved with ion-exchange resins. The resins have a high surface area decorated with many ion-exchange sites and thus a high sorption capacity for the analyte of interest. However, these sites are primarily accessed by diffusion which limits the throughput and quality of the separation. Reported herein is a study of monolithic polyHIPE foam columns surface-grafted with a brush of polymer containing ion-exchange functionality for the separation of Pu. It was found that the loading curves of the foam material are steeper than a similarly scaled resin-based column, and the elution profiles of the foams were narrower than the resin, generating more concentrated eluate relative to the amount of Pu loaded onto the foam columns. On a gravimetric basis, the foams had a similar or greater Pu capacity than the resin with fewer ion-exchange sites per unit mass. These characteristics are mainly due to the convective mass transport which dominates the separation in the polyHIPE materials, suggesting that these materials may be useful for more efficient hazardous metal separations.

2.
Artículo en Inglés | MEDLINE | ID: mdl-16950649

RESUMEN

Fourier transform infrared techniques, infrared difference spectroscopy and dynamic infrared linear dichroism (DIRLD), have been utilized to explore the effects of humidity and water absorption on a poly(ester urethane). An environmental infrared microbalance cell was used to measure the infrared spectra as a function of humidity and accompanying weight change for the absorption-desorption processes. The infrared difference data indicate that exposure to humidity affects the hydrogen-bonding interactions in the polymer. Dynamic infrared linear dichroism studies in tensile deformation mode as a function of humidity demonstrate how changes in water content affect the orientational response of functional groups. Complex behavior as a function of humidity for functional groups involved in hydrogen bonding indicates that water absorbed by the polymer affects the micro-environments near these functional groups.


Asunto(s)
Humedad , Poliésteres/química , Poliuretanos/química , Cinética , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA