Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(20)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34683732

RESUMEN

Multimaterial additive manufacturing is an attractive way of producing parts with improved functional properties by combining materials with different properties within a single part. Pure Ti provides a high ductility and an improved corrosion resistance, while the Ti64 alloy has a higher strength. The combination of these alloys within a single part using additive manufacturing can be used to produce advanced multimaterial components. This work explores the multimaterial Laser Powder Bed Fusion (L-PBF) of Ti/Ti64 graded material. The microstructure and mechanical properties of Ti/Ti64-graded samples fabricated by L-PBF with different geometries of the graded zones, as well as different effects of heat treatment and hot isostatic pressing on the microstructure of the bimetallic Ti/Ti64 samples, were investigated. The transition zone microstructure has a distinct character and does not undergo significant changes during heat treatment and hot isostatic pressing. The tensile tests of Ti/Ti64 samples showed that when the Ti64 zones were located along the sample, the ratio of cross-sections has a greater influence on the mechanical properties than their shape and location. The presented results of the investigation of the graded Ti/Ti64 samples allow tailoring properties for the possible applications of multimaterial parts.

2.
Materials (Basel) ; 14(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34501035

RESUMEN

Titanium orthorhombic alloys based on intermetallic Ti2AlNb-phase are attractive materials for lightweight high-temperature applications. However, conventional manufacturing of Ti2AlNb-based alloys is costly and labor-consuming. Additive Manufacturing is an attractive way of producing parts from Ti2AlNb-based alloys. High-temperature substrate preheating during Selective Laser Melting is required to obtain crack-free intermetallic alloys. Due to the nature of substrate preheating, the temperature profile along the build height might be uneven leading to inhomogeneous microstructure and defects. The microstructural homogeneity of the alloy along the build direction was evaluated. The feasibility of mitigating the microstructural inhomogeneity was investigated by fabricating Ti2AlNb-alloy samples with graded microstructure and subjecting them to annealing. Hot isostatic pressing allowed us to achieve a homogeneous microstructure, eliminate residual micro defects, and improve mechanical properties with tensile strength reaching 1027 MPa and 860 MPa at room temperature and 650 °C, correspondingly. Annealing of the microstructurally graded alloy at 1050 °C allowed us to obtain a homogeneous B2 + O microstructure with a uniform microhardness distribution. The results of the study showed that the microstructural inhomogeneity of the titanium orthorhombic alloy obtained by SLM can be mitigated by annealing or hot isostatic pressing. Additionally, it was shown that by applying multiple-laser exposure for processing each layer it is possible to locally tailor the phase volume and morphology and achieve microstructure and properties similar to the Ti2AlNb-alloy obtained at higher preheating temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA