Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; 37(2): 536-546, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29053449

RESUMEN

Patients who have implanted medical devices with long conductive leads are often restricted from receiving MRI scans due to the danger of RF-induced heating near the lead tips. Phantom studies have shown that this heating varies significantly on a case-by-case basis, indicating that many patients with implanted devices can receive clinically useful MRI scans without harm. However, the difficulty of predicting RF-induced lead tip heating prior to scanning prevents numerous implant recipients from being scanned. Here, we demonstrate that thermo-acoustic ultrasound (TAUS) has the potential to be utilized for a pre-scan procedure assessing the risk of RF-induced lead tip heating in MRI. A system was developed to detect TAUS signals by four different TAUS acquisition methods. We then integrated this system with an MRI scanner and detected a peak in RF power absorption near the tip of a model lead when transmitting from the scanner's body coil. We also developed and experimentally validated simulations to characterize the thermo-acoustic signal generated near lead tips. These results indicate that TAUS is a promising method for assessing RF implant safety, and with further development, a TAUS pre-scan could allow many more patients to have access to MRI scans of significant clinical value.


Asunto(s)
Imagen por Resonancia Magnética/efectos adversos , Prótesis e Implantes/efectos adversos , Termografía/métodos , Ultrasonografía/métodos , Simulación por Computador , Diseño de Equipo , Calor/efectos adversos , Humanos , Procesamiento de Imagen Asistido por Computador , Seguridad del Paciente , Fantasmas de Imagen , Ondas de Radio , Procesamiento de Señales Asistido por Computador
2.
Magn Reson Med ; 73(3): 1328-39, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24623586

RESUMEN

PURPOSE: The concept of a "radiofrequency safety prescreen" is investigated, wherein dangerous interactions between radiofrequency fields used in MRI, and conductive implants in patients are detected through impedance changes in the radiofrequency coil. THEORY: The behavior of coupled oscillators is reviewed, and the resulting, observable impedance changes are discussed. METHODS: A birdcage coil is loaded with a static head phantom and a wire phantom with a wire close to its resonant length, the shape, position, and orientation of which can be changed. Interactions are probed with a current sensor and network analyzer. RESULTS: Impedance spectra show dramatic, unmistakable splitting in cases of strong coupling, and strong correlation is observed between induced current and scattering parameters. CONCLUSIONS: The feasibility of a new, low-power prescreening technique has been demonstrated in a simple phantom experiment, which can unambiguously detect resonant interactions between an implanted wire and an imaging coil. A new technique has also been presented which can detect parallel transmit null modes for the wire.


Asunto(s)
Quemaduras por Electricidad/etiología , Quemaduras por Electricidad/prevención & control , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Prótesis e Implantes , Contraindicaciones , Diseño de Equipo , Análisis de Falla de Equipo , Seguridad de Equipos , Humanos , Ondas de Radio/efectos adversos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Magn Reson Med ; 67(2): 353-62, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22135085

RESUMEN

In parallel excitation, the computational speed of numerical radiofrequency (RF) pulse design methods is critical when subject dependencies and system nonidealities need to be incorporated on-the-fly. One important concern with optimization-based methods is high peak RF power exceeding hardware or safety limits. Hence, online controllability of the peak RF power is essential. Variable-rate selective excitation pulse reshaping is ideally suited to this problem due to its simplicity and low computational cost. In this work, we first improve the fidelity of variable-rate selective excitation implementation for discrete-time waveforms through waveform oversampling such that variable-rate selective excitation can be robustly applied to numerically designed RF pulses. Then, a variable-rate selective excitation-guided numerical RF pulse design is suggested as an online RF pulse design framework, aiming to simultaneously control peak RF power and compensate for off-resonance.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Ondas de Radio , Humanos , Modelos Teóricos , Fantasmas de Imagen , Sensibilidad y Especificidad , Diseño de Software
4.
IEEE Trans Med Imaging ; 31(2): 370-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21954200

RESUMEN

Magnetic resonance imaging (MRI) pulse sequence consoles typically employ closed proprietary hardware, software, and interfaces, making difficult any adaptation for innovative experimental technology. Yet MRI systems research is trending to higher channel count receivers, transmitters, gradient/shims, and unique interfaces for interventional applications. Customized console designs are now feasible for researchers with modern electronic components, but high data rates, synchronization, scalability, and cost present important challenges. Implementing large multichannel MR systems with efficiency and flexibility requires a scalable modular architecture. With Medusa, we propose an open system architecture using the universal serial bus (USB) for scalability, combined with distributed processing and buffering to address the high data rates and strict synchronization required by multichannel MRI. Medusa uses a modular design concept based on digital synthesizer, receiver, and gradient blocks, in conjunction with fast programmable logic for sampling and synchronization. Medusa is a form of synthetic instrument, being reconfigurable for a variety of medical/scientific instrumentation needs. The Medusa distributed architecture, scalability, and data bandwidth limits are presented, and its flexibility is demonstrated in a variety of novel MRI applications.


Asunto(s)
Redes de Comunicación de Computadores/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Imagen por Resonancia Magnética/instrumentación , Magnetismo/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Programas Informáticos , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Magn Reson Med ; 64(3): 823-33, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20593374

RESUMEN

Patients with long-wire medical implants are currently prevented from undergoing magnetic resonance imaging (MRI) scans due to the risk of radio frequency (RF) heating. We have developed a simple technique for determining the heating potential for these implants using reversed radio frequency (RF) polarization. This technique could be used on a patient-to-patient basis as a part of the standard prescan procedure to ensure that the subject's device does not pose a heating risk. By using reversed quadrature polarization, the MR scan can be sensitized exclusively to the potentially dangerous currents in the device. Here, we derive the physical principles governing the technique and explore the primary sources of inaccuracy. These principles are verified through finite-difference simulations and through phantom scans of implant leads. These studies demonstrate the potential of the technique for sensitively detecting potentially dangerous coupling conditions before they can do any harm.


Asunto(s)
Quemaduras por Electricidad/etiología , Quemaduras por Electricidad/prevención & control , Seguridad de Equipos/instrumentación , Seguridad de Equipos/métodos , Imagen por Resonancia Magnética/efectos adversos , Imagen por Resonancia Magnética/instrumentación , Prótesis e Implantes/efectos adversos , Algoritmos , Diseño Asistido por Computadora , Análisis de Falla de Equipo , Humanos , Ondas de Radio
6.
IEEE Trans Med Imaging ; 28(8): 1231-7, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19211340

RESUMEN

The magnetic particle imaging (MPI) method directly images the magnetization of super-paramagnetic iron oxide (SPIO) nanoparticles, which are contrast agents commonly used in magnetic resonance imaging (MRI). MPI, as originally envisioned, requires a high-bandwidth receiver coil and preamplifier, which are difficult to optimally noise match. This paper introduces Narrowband MPI, which dramatically reduces bandwidth requirements and increases the signal-to-noise ratio for a fixed specific absorption rate. We employ a two-tone excitation (called intermodulation) that can be tailored for a high-Q, narrowband receiver coil. We then demonstrate a new MPI instrument capable of full 3-D tomographic imaging of SPIO particles by imaging acrylic and tissue phantoms.


Asunto(s)
Compuestos Férricos/química , Magnetismo , Nanopartículas/química , Tomografía/métodos , Algoritmos , Animales , Simulación por Computador , Hígado/anatomía & histología , Ratones , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA