Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-510287

RESUMEN

Spike protein of SARS-CoV-2 variants play critical role in the infection and transmission through its interaction with hACE2 receptor. Prior findings using molecular docking and biomolecular studies reported varied findings on the difference in the interactions among the spike variants with hACE2 receptor. Hence, it is a prerequisite to understand these interactions in a more precise manner. To this end, firstly, we performed ELISA with trimeric spike proteins of Wild (Wuhan Hu-1), Delta, C.1.2 and Omicron variants. Further, to study the interactions in a more specific manner by mimicking the natural infection, we developed hACE2 receptor expressing HEK-293T cell line and evaluated binding efficiencies of the variants and competitive binding of spike variants with D614G spike pseudotyped virus. In lines with the existing findings, we observed that Omicron had higher binding efficiency compared to Delta in both ELISA and Cellular models. Intriguingly, we found that cellular models could differentiate the subtle differences between the closely related C.1.2 and Delta in their binding to hACE2. From the analysis in receptor binding domain (RBD) revealed that a single common modification, N501Y, present in both Omicron and C.1.2 is driving the enhanced spike binding to the receptor and showed two-fold superior competitive binding than Delta. Our study using cellular model provides a precise method to evaluate the binding interactions between spike sub-lineages to hACE2 receptors and signifies the role of single common modification N501Y in RBD towards imparting superior binding efficiencies. Our approach would be instrumental in understanding the disease progression and developing therapeutics. Author SummarySpike proteins of evolving SARS-CoV2 variants demonstrated their signature binding to hACE2 receptor, in turn contributed to driving the infection and transmission. Prior studies to scale the binding efficiencies between the spike variant and the receptor had consensus in distinct variants, but discrepancies in the closely related ones. To this end, we compared spike variants-receptor interactions with ELISA, from cells expressing hACE2 receptor. Intriguingly, we found that cellular models could differentiate the subtle differences between the closely related C.1.2 and Delta in their binding to hACE2. More importantly, competitive binding studies in presence of pseudovirus, demonstrated that a single common modification, N501Y, present in both Omicron and C.1.2 showed two fold superior competitive binding than Delta. Collectively, our study suggests a precise approach to evaluate the binding interactions between spike sub-lineages to hACE2 receptor. This would be instrumental in understanding the disease progression and developing therapeutics.

2.
Biomaterials ; 32(22): 5231-40, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21501864

RESUMEN

Understanding the structural parameters of cationic amphiphiles which can influence gene transfer efficiencies of cationic amphiphiles continues to remain important for designing efficient liposomal gene delivery reagents. Previously we demonstrated the influence of structural orientation of the ester linker (widely used in covalently tethering the polar head and the non-polar tails) in modulating in vitro gene transfer efficiencies of cationic amphiphiles. However, our previously described cationic amphiphiles with ester linkers failed to deliver genes under in vivo conditions. Herein we report on the development of a highly serum compatible cationic amphiphile with circulation stable amide linker which shows remarkable selectivity in transfecting mouse lung. We also demonstrate that reversing structural orientation of the amide linker adversely affects both serum compatibility and the lung selective gene transfer property. Dynamic laser light scattering and atomic force microscopic studies revealed smaller average hydrodynamic sizes of the liposomes of transfection efficient lipid than those for the liposomes of transfection incompetent analog (148 ± 1 nm vs 214 ± 4 nm). Average surface potential of the liposomes of transfection competent amphiphiles were found to be significantly higher than that for the liposomes of transfection incompetent analog (10.7 ± 5.4 mV vs 2.8 ± 1.3 mV, respectively). Findings in fluorescence resonance energy transfer and dye entrapment experiments support lower rigidity and higher biomembrane fusogenicity of the liposomes of the transfection efficient amphiphiles. Importantly, cationic lipoplexes of the novel amide-linker based amphiphile exhibited higher mouse lung selective gene transfer properties than DOTAP, one of the widely used commercially available liposomal lung transfection kits. In summary, the present findings demonstrate for the first time that amide linker structural orientation profoundly influences the serum compatibility and lung transfection efficiencies of cationic amphiphiles.


Asunto(s)
Amidas , Cationes , Histocompatibilidad , Pulmón/fisiología , Suero/metabolismo , Tensoactivos , Transfección , Amidas/química , Amidas/metabolismo , Animales , Cationes/química , Cationes/metabolismo , Línea Celular , ADN/química , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Transferencia de Gen , Humanos , Hidrodinámica , Lípidos/química , Liposomas/química , Liposomas/ultraestructura , Masculino , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Microscopía de Fuerza Atómica , Estructura Molecular , Relación Estructura-Actividad , Tensoactivos/síntesis química , Tensoactivos/química , Tensoactivos/metabolismo
3.
Bioconjug Chem ; 22(3): 497-509, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21338113

RESUMEN

Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Pulmón/metabolismo , Aceites de Plantas/química , Transfección/métodos , Animales , Transporte Biológico , Células CHO , Membrana Celular/metabolismo , Fenómenos Químicos , Aceite de Coco , Cricetinae , Cricetulus , Liposomas/metabolismo , Liposomas/toxicidad , Masculino , Ratones , Ratones Endogámicos BALB C , Especificidad de Órganos
4.
J Am Chem Soc ; 129(37): 11408-20, 2007 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-17718562

RESUMEN

A number of prior studies have demonstrated that the DNA-binding and gene transfection efficacies of cationic amphiphiles crucially depend on their various structural parameters including hydrophobic chain lengths, headgroup functionalities, and the nature of the linker-functionality used in tethering the polar headgroup and hydrophobic tails. However, to date addressing the issue of linker orientation remains unexplored in liposomal gene delivery. Toward probing the influence of linker orientation in cationic lipid mediated gene delivery, we have designed and synthesized two structurally isomeric remarkably similar cationic amphiphiles 1 and 2 bearing the same hydrophobic tails and the same polar headgroups connected by the same ester linker group. The only structural difference between the cationic amphiphiles 1 and 2 is the orientation of their linker ester functionality. While lipid 1 showed high gene transfer efficacies in multiple cultured animal cells, lipid 2 was essentially transfection incompetent. Findings in both transmission electron microscopic and dynamic laser light scattering studies revealed no significant size difference between the lipoplexes of lipids 1 and 2. Findings in confocal microscopic and fluorescence resonance energy transfer (FRET) experiments, taken together, support the notion that the remarkably higher gene transfer efficacies of lipid 1 compared to those of lipid 2 presumably originate from higher biomembrane fusogenicity of lipid 1 liposomes. Differential scanning calorimetry (DSC) and fluorescence anisotropy studies revealed a significantly higher gel-to-liquid crystalline temperature for the lipid 2 liposomes than that for lipid 1 liposomes. Findings in the dye entrapment experiment were also consistent with the higher rigidity of lipid 2/cholesterol (1:1 mole ratio) liposomes. Thus, the higher biomembrane fusibility of lipid 1 liposomes than that of lipid 2 liposomes presumably originates from the more rigid nature of lipid 2 cationic liposomes. Taken together, the present findings demonstrate for the first time that even as minor a structural variation as linker orientation reversal in cationic amphiphiles can profoundly influence DNA-binding characteristics, membrane rigidity, membrane fusibility, cellular uptake, and consequently gene delivery efficacies of cationic liposomes.


Asunto(s)
Reactivos de Enlaces Cruzados/química , ADN/administración & dosificación , Técnicas de Transferencia de Gen , Lípidos/química , Animales , Línea Celular , Supervivencia Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Desoxirribonucleasa I/metabolismo , Humanos , Lípidos/síntesis química , Liposomas , Plásmidos , Transfección , beta-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA