Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Nutr ; 43(10): 2305-2315, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39226718

RESUMEN

BACKGROUND: We have previously demonstrated that dietary saturated fatty acids (SFA), when compared to polyunsaturated fatty acids (PUFA), are preferentially partitioned into oxidation pathways. However, it remains unclear if this preferential handling is maintained when hepatocellular metabolism is shifted toward fatty acid (FA) esterification and away from oxidation, such as when hepatic de novo lipogenesis (DNL) is upregulated. AIM: To investigate whether an acute upregulation of hepatic DNL influences dietary FA partitioning into oxidation pathways. METHODS: 20 healthy volunteers (11 females) underwent a fasting baseline visit followed by two study days, 2-weeks apart. Prior to each study day, participants consumed an isocaloric high-carbohydrate diet (to upregulate hepatic DNL) for 3-days. On the two study days, participants consumed an identical standardised test meal that contained either [U13C]palmitate or [U13C]linoleate, in random order, to trace the fate of dietary FA. Blood and breath samples were collected over a 6h postprandial period and 13C enrichment in breath CO2 and plasma lipid fractions were measured using gas-chromatography-combustion-isotope ratio mass spectrometry. RESULTS: Compared to the baseline visit, fasting plasma triglyceride concentrations and markers of hepatic DNL, the lipogenic and stearyl-CoA desaturase indices, were significantly (p < 0.05) increased after consumption of the high-carbohydrate diet. Appearance of 13C in expired CO2 and tracer recovery were significantly (p < 0.05) higher after consumption of the meal containing [U13C]linoleate compared to [U13C]palmitate (5.1 ± 0.5% vs. 3.7 ± 0.4%), respectively. Incorporation of 13C into the plasma triglyceride and non-esterified fatty acid pool was significantly (p < 0.001) greater for [U13C]palmitate compared to [U13C]linoleate. CONCLUSION: Dietary PUFA compared to SFA appear to be preferentially partitioned into oxidation pathways during an acute upregulation of hepatic DNL, thus consumption of a PUFA-enriched diet may help mitigate intrahepatic triglyceride accumulation in individuals at risk of cardiometabolic disease.

2.
Diabetes ; 73(5): 659-670, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387045

RESUMEN

Cardiovascular disease represents the leading cause of death in people with diabetes, most notably from macrovascular diseases such as myocardial infarction or heart failure. Diabetes also increases the risk of a specific form of cardiomyopathy, referred to as diabetic cardiomyopathy (DbCM), originally defined as ventricular dysfunction in the absence of underlying coronary artery disease and/or hypertension. Herein, we provide an overview on the key mediators of DbCM, with an emphasis on the role for perturbations in cardiac substrate metabolism. We discuss key mechanisms regulating metabolic dysfunction in DbCM, with additional focus on the role of metabolites as signaling molecules within the diabetic heart. Furthermore, we discuss the preclinical approaches to target these perturbations to alleviate DbCM. With several advancements in our understanding, we propose the following as a new definition for, or approach to classify, DbCM: "diastolic dysfunction in the presence of altered myocardial metabolism in a person with diabetes but absence of other known causes of cardiomyopathy and/or hypertension." However, we recognize that no definition can fully explain the complexity of why some individuals with DbCM exhibit diastolic dysfunction, whereas others develop systolic dysfunction. Due to DbCM sharing pathological features with heart failure with preserved ejection fraction (HFpEF), the latter of which is more prevalent in the population with diabetes, it is imperative to determine whether effective management of DbCM decreases HFpEF prevalence.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Hipertensión , Humanos , Cardiomiopatías Diabéticas/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico
3.
J Biol Chem ; 297(3): 101020, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34331943

RESUMEN

Endochondral ossification initiates the growth of the majority of the mammalian skeleton and is tightly controlled through gene regulatory networks. The forkhead box transcription factors Foxc1 and Foxc2 regulate aspects of osteoblast function in the formation of the skeleton, but their roles in chondrocytes to control endochondral ossification are less clear. Here, we demonstrate that Foxc1 expression is directly regulated by the activity of SRY (sex-determining region Y)-box 9, one of the earliest transcription factors to specify the chondrocyte lineage. Moreover, we demonstrate that elevated expression of Foxc1 promotes chondrocyte differentiation in mouse embryonic stem cells and loss of Foxc1 function inhibits chondrogenesis in vitro. Using chondrocyte-targeted deletion of Foxc1 and Foxc2 in mice, we reveal a role for these factors in chondrocyte differentiation in vivo. Loss of both Foxc1 and Foxc2 caused a general skeletal dysplasia predominantly affecting the vertebral column. The long bones of the limbs were smaller, mineralization was reduced, and organization of the growth plate was disrupted; in particular, the stacked columnar organization of the proliferative chondrocyte layer was reduced in size and cell proliferation was decreased. Differential gene expression analysis indicated disrupted expression patterns of chondrogenesis and ossification genes throughout the entire process of endochondral ossification in chondrocyte-specific Foxc1/Foxc2 KO embryos. Our results suggest that Foxc1 and Foxc2 are required for normal chondrocyte differentiation and function, as loss of both genes results in disorganization of the growth plate, reduced chondrocyte proliferation, and delays in chondrocyte hypertrophy that prevents ossification of the skeleton.


Asunto(s)
Condrocitos/metabolismo , Condrogénesis/genética , Factores de Transcripción Forkhead/metabolismo , Osteogénesis/genética , Células Madre/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Condrocitos/citología , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/fisiología , Placa de Crecimiento/citología , Placa de Crecimiento/metabolismo , Ratones , Factor de Transcripción SOX9/fisiología , Células Madre/citología
4.
Am J Physiol Heart Circ Physiol ; 320(1): H432-H446, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33185110

RESUMEN

Following cardiac injury, increased adrenergic drive plays an important role in compensating for reduced cardiac function. However, chronic excess adrenergic stimulation can be detrimental to cardiac pathophysiology and can also affect other organs including adipose tissue, leading to increased lipolysis. Interestingly, inhibition of adipose triglyceride lipase (ATGL), a rate-limiting enzyme in lipolysis, in adipocytes ameliorates cardiac dysfunction in a heart failure model. Thus, we investigated whether inhibition of adipocyte ATGL can mitigate the adverse cardiac effects of chronic adrenergic stimulation and explored the underlying mechanisms. To do this, isoproterenol (ISO) was continuously administered to C57Bl/6N mice for 2 wk with or without an ATGL inhibitor (Atglistatin). We found that Atglistatin alleviated ISO-induced cardiac remodeling and reduced ISO-induced upregulation of galectin-3, a marker of activated macrophages and a potent inducer of fibrosis, in white adipose tissue (WAT), heart, and the circulation. To test whether the beneficial effects of Atglistatin occur via inhibition of adipocyte ATGL, adipocyte-specific ATGL knockout (atATGL-KO) mice were utilized for similar experiments. Subsequently, the same cardioprotective effects of atATGL-KO following ISO administration were observed. Furthermore, Atglistatin and atATGL-KO abolished ISO-induced galectin-3 secretion from excised WAT. We further demonstrated that activation of cardiac fibroblasts by the conditioned media of ISO-stimulated WAT is galectin-3-dependent. In conclusion, the inhibition of adipocyte ATGL ameliorated ISO-induced cardiac remodeling possibly by reducing galectin-3 secretion from adipose tissue. Thus, inhibition of adipocyte ATGL might be a potential target to prevent some of the adverse effects of chronic excess adrenergic drive.NEW & NOTEWORTHY The reduction of lipolysis by adipocyte ATGL inhibition ameliorates cardiac remodeling induced by chronic ß-adrenergic stimulation likely via reducing galectin-3 secretion from adipose tissue. Our findings highlight that suppressing lipolysis in adipocytes may be a potential therapeutic target for patients with heart failure whose sympathetic nervous system is activated. Furthermore, galectin-3 might be involved in the mechanisms by which excessive lipolysis in adipose tissues influences remote cardiac pathologies and thus warrants further investigation.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Antiinflamatorios/farmacología , Inhibidores Enzimáticos/farmacología , Cardiopatías/prevención & control , Mediadores de Inflamación/metabolismo , Isoproterenol , Lipasa/antagonistas & inhibidores , Compuestos de Fenilurea/farmacología , Remodelación Ventricular/efectos de los fármacos , Tejido Adiposo Blanco/enzimología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Galectina 3/metabolismo , Cardiopatías/inducido químicamente , Cardiopatías/enzimología , Cardiopatías/fisiopatología , Lipasa/metabolismo , Lipólisis/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Comunicación Paracrina , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA