Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(20): 17719-17730, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251120

RESUMEN

Pure and urea-modified zinc oxide thin films are prepared using the spray pyrolysis technique on microscopic glass substrates. We have added different urea concentrations as a modifier to the zinc acetate precursor for obtaining urea-modified ZnO thin films and investigated the effect of the urea concentration on the structural, morphological, optical, and gas-sensing properties. The gas-sensing characterization of pure and urea-modified ZnO thin films is tested in the static liquid distribution technique with 25 ppm of ammonia gas at an operating temperature of 27 °C. The prepared film with a concentration of 2 wt % of urea has shown the best sensing properties toward ammonia vapors due to more active sites for the reaction between chemi-absorbed oxygen and the target vapors.

2.
ACS Omega ; 7(51): 47796-47805, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36591164

RESUMEN

This paper focused on the preparation of pure and Cr-doped tungsten trioxide (WO3) thin films using the spray pyrolysis method. Different techniques were adopted to analyze these films' structural and morphological properties. The X-ray detection analysis showed that the average crystallite size of the WO3-nanostructured thin films increased as the Cr doping concentration increased. The atomic force microscopy results showed that the root-mean-square roughness of the films increased with Cr doping concentration up to 3 wt % and then decreased. The increased roughness is favorable for gas-sensing applications. Surface morphology and elemental analysis of the films were studied by field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy measurements. The 3 wt % Cr-WO3 has a large nanoflake-like structure with high surface roughness and porous morphology. Gas-sensing characteristics of undoped and Cr-doped WO3 thin films were investigated with various gases at room temperature. The results showed that 3 wt % Cr-doped WO3 film performed the maximum response toward 50 ppm of xylene with excellent selectivity at room temperature. We believe that increased lattice defects, surface morphology, and roughness due to Cr doping in the WO3 crystal matrix might be responsible for increased xylene sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA