Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Eng Technol ; 47(4): 201-216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37910047

RESUMEN

A first-level textile-based electrocardiogram (ECG) monitoring system referred to as "CardioS" (cardiac sensor) for continuous health monitoring applications is proposed in this study to address the demand for resource-constrained environments. and the signal quality assessment of a wireless CardioS was studied. The CardioS consists of a Lead-I ECG signal recorded wirelessly using silver-plated nylon woven (Ag-NyW) dry textile electrodes to compare the results of wired wearable Ag-NyW textile electrode-based ECG acquisition system and CardioS. The effect of prolonged usage of Ag-NyW dry electrodes on electrode impedance was tested in the current work. In addition, electrode half-cell potential was measured to validate the range of Ag-NyW dry electrodes for ECG signal acquisition. Further, the quality of signals recorded by the proposed wireless CardioS framework was evaluated and compared with clinical disposable (Ag-AgCl Gel) electrodes. The signal quality was assessed in terms of mean magnitude coherence spectra, signal cross-correlation, signal-to-noise-band ratio (Sband/Nband), crest factor, low and high band powers and power spectral density. The experimental results showed that the impedance was increased by 2.5-54.6% after six weeks of continuous usage. This increased impedance was less than 1 MΩ/cm2, as reported in the literature. The half-cell potential of the Ag-NyW textile electrode obtained was 80 mV, sufficient to acquire the ECG signal from the human body. All the fidelity parameters measured by Ag-NyW textile electrodes were correlated with standard disposable electrodes. The cardiologists validated all the measurements and confirmed that the proposed framework exhibited good performance for ECG signal acquisition from the five healthy subjects. As a result of its low-cost architecture, the proposed CardioS framework can be used in resource-constrained environments for ECG monitoring.


Asunto(s)
Electrocardiografía , Textiles , Humanos , Electrocardiografía/métodos , Impedancia Eléctrica , Monitoreo Fisiológico , Plata , Electrodos
2.
J Med Signals Sens ; 13(3): 239-251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622041

RESUMEN

The Holter monitor captures the electrocardiogram (ECG) and detects abnormal episodes, but physicians still use manual cross-checking. It takes a considerable time to annotate a long-term ECG record. As a result, research continues to be conducted to produce an effective automatic cardiac episode detection technique that will reduce the manual burden. The current study presents a signal processing framework to detect ventricular ectopic beat (VEB) episodes in long-term ECG signals of cross-database. The proposed study has experimented with the cross-database of open-source and proprietary databases. The ECG signals were preprocessed and extracted the features such as pre-RR interval, post-RR interval, QRS complex duration, QR slope, and RS slope from each beat. In the proposed work, four models such as support vector machine, k-means nearest neighbor, nearest mean classifier, and nearest RMS (NRMS) classifiers were used to classify the data into normal and VEB episodes. Further, the trained models were used to predict the VEB episodes from the proprietary database. NRMS has reported better performance among four classification models. NRMS has shown the classification accuracy of 98.68% and F1-score of 94.12%, recall rate of 100%, specificity of 98.53%, and precision of 88.89% with an open-source database. In addition, it showed an accuracy of 99.97%, F1-score of 94.54%, recall rate of 98.62%, specificity of 99.98%, and precision of 90.79% to detect the VEB cardiac episodes from the proprietary database. Therefore, it is concluded that the proposed framework can be used in the automatic diagnosis system to detect VEB cardiac episodes.

3.
Cardiovasc Eng Technol ; 14(2): 331-349, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36750523

RESUMEN

MOTIVATION: Cardiologists rely on the long duration Holter electrocardiogram (ECG) recordings in general for assessment of abnormal episodes and such process found to be tedious and time consuming. An automatic abnormal cardiac episode detection algorithm is the need of the hour that needs to be optimized to reduce the manual burden. OBJECTIVE: The current study presents a signal processing framework with a cross-database to detect abnormal episodes in long-term ECG signals. METHODOLOGY: The data was pre-processed to remove power line interference and baseline drift using basis pursuit sparsely decomposed tunable-Q wavelet transform (BPSD-TQWT). A total of 44 features of time domain, frequency domain, and time-frequency domain characteristics were extracted from the ECG signal. This proposed work tested classification performance with support vector machine (SVM), K-nearest neighbour (KNN), decision tree, naïve Bayes, the nearest mean classifier, and the nearest root mean square classifiers. The trained models with open-source data were used to predict the abnormal episodes from the proprietary database and vice versa. Finally, the performance was analysed via recall rate, specificity, precision, F1-score, and accuracy. RESULTS: Among six classification models, SVM performed best. With an open-source database, the SVM model achieved 95.01% accuracy, and detected the abnormal episodes from proprietary database with an accuracy of 99.31%. In addition, with the proprietary database SVM model classified the normal-abnormal cardiac episodes with an accuracy of 99.89% and detected the abnormal episodes from proprietary database with an accuracy of 92.51%. CONCLUSION: When the performance results were compared with the literature, it was observed that the proposed framework performed well. As a result, the proposed framework could be used in an autonomous diagnosis system.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Análisis de Ondículas , Teorema de Bayes , Algoritmos , Electrocardiografía/métodos , Máquina de Vectores de Soporte
4.
Phys Eng Sci Med ; 45(3): 817-833, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35771386

RESUMEN

The electrocardiogram (ECG) is an essential diagnostic tool to identify cardiac abnormalities. So, the primary issue in an ECG acquisition unit is noise interference. Essentially, the prominent ECG noise sources are power line interference (PLI) and Baseline drift (BD). Therefore, in the study, a new technique called the basis pursuit sparse decomposition (BPSD) using tunable-Q wavelet transform (TQWT) is proposed to remove the PLI and BD present in the ECG recordings. Chiefly, the TQWT method is a wavelet transform with distinct Quality factors (Q) which can adjust the signal to the natural non-stationary behaviour in time and space. Further, the method decomposes the signal into high-Quality factor and low-Quality factor components of wavelet coefficients to eliminate PLI and BD by choosing appropriate redundancy (r) and decomposition levels (J2). The 'r' and 'J' values are chosen based on the trial-and-error method concerning signal-to-noise ratio (SNR). It has been found that the PLI noise has been suppressed significantly with the redundancy of 3 and decomposition levels of 10; more so, the BD has been removed with the redundancy of 4 and decomposition levels of 19. The proposed method BPSD-TQWT was evaluated using the open-source MIT-BIH Arrhythmia database and the real-time ECG recordings collected through a wearable Silver Plated Nylon Woven (Ag-NyW) textile-based ECG monitoring system. The performance was then evaluated using fidelity metrics such as SNR, maximum absolute error (MAX), and normalized cross-correlation coefficient (NCC). The results were compared with IIR filter, stationary wavelet transform (SWT), non-local means (NLM) and local means (LM) methods. Using the proposed method on MIT-BIH Arrhythmia Database, performance evaluation parameters such as SNR, MAX, and NCC were improved by 4.3 dB and 6.8 dB, 0.37 and 0.78, 0.2 and 0.46 compared to IIR and SWT methods respectively. On the other hand, using the proposed method on the real-time datasets, values of SNR, MAX, and NCC were improved by 0.3 dB and 0.6 dB, 0.009 and 0.74 and 0.3 and 0.35 compared to IIR and SWT methods respectively. Finally, it can be concluded that the proposed method shows improved performance over IIR, SWT, NLM and LM methods for PLI and BD removal.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Análisis de Ondículas , Algoritmos , Arritmias Cardíacas/diagnóstico por imagen , Electrocardiografía/métodos , Humanos
5.
J Med Eng ; 2016: 6931347, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27872843

RESUMEN

External cardiac loop recorder (ELR) is a kind of ECG monitoring system that records cardiac activities of a subject continuously for a long time. When the heart palpitations are not the frequent and nonspecific character, it is difficult to diagnose the disease. In such a case, ELR is used for long-term monitoring of heart signal of the patient. But the cost of ELR is very high. Therefore, it is not prominently available in developing countries like India. Since the design of ELR includes the ECG electrodes, instrumentation amplifier, analog to digital converter, and signal processing unit, a comparative review of each part of the ELR is presented in this paper in order to design a cost effective, low power, and compact kind of ELR. This review will also give different choices available for selecting and designing each part of the ELR system. Finally, the review will suggest the better choice for designing a cost effective external cardiac loop recorder that helps to make it available even for rural people in India.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA