RESUMEN
Climate change has diversified negative implications on environmental sustainability and water availability. Assessing the impacts of climate change is crucial to enhance resilience and future preparedness particularly at a watershed scale. Therefore, the goal of this study is to evaluate the impact of climate change on the water balance components and extreme events in Piabanha watershed in the Brazilian Atlantic Forest. In this study, extreme climate change scenarios were developed using a wide array of global climate models acquired from the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Reports (AR6). Two extreme climate change scenarios, DryHot and WetCool, were integrated into the Soil and Water Assessment Tools (SWAT) hydrological model to evaluate their impacts on the hydrological dynamics in the watershed. The baseline SWAT model was first developed and evaluated using different model performance evaluation metrics such as coefficient of determination (R2), Nash-Sutcliffe (NSC), and Kling-Gupta efficiency coefficient (KGE). The model results illustrated an excellent model performance with metric values reaching 0.89 and 0.64 for monthly and daily time steps respectively in the calibration (2008 to 2017) and validation (2018 to 2023) periods. The findings of future climate change impacts assessment underscored an increase in temperature and shifts in precipitation patterns. In terms of streamflow, high-flow events may experience a 47.3 % increase, while low-flows could see an 76.6 % reduction. In the DryHot scenario, annual precipitation declines from 1657 to 1420 mm, with evapotranspiration reaching 54 % of precipitation, marking a 9 % rise compared to the baseline. Such changes could induce water stress in plants and lead to modifications on structural attributes of the ecosystem recognized as the Atlantic rainforest. This study established boundaries concerning the effects of climate change and highlighted the need for proactive adaptation strategies and mitigation measures to minimize the potential adverse impacts in the study watershed.
RESUMEN
This study describes and implements an integrated, multimedia, process-based system-level approach to estimating nitrogen (N) fate and transport in large river basins. The modeling system includes the following components: (1) Community Multiscale Air Quality (CMAQ),(2) Weather Research and Forecasting Model (WRF), (3) Environmental Policy Integrated Climate (EPIC), and (4) Soil and Water Assessment Tool (SWAT). The previously developed Fertilizer Emission Scenario Tool for CMAQ (FEST-C), an advanced user interface, integrated EPIC with the WRF model and CMAQ. The FEST-C system, driven by process-based WRF weather simulations, includes atmospheric N additions to agricultural cropland and agricultural cropland contributions to ammonia emissions. This study focuses on integrating the watershed hydrology and water quality model with FEST-C system so that a full multimedia assessment on water quality in large river basins to address impacts of fertilization, meteorology, and atmospheric N deposition on water quality can be achieved. Objectives of this paper are to describe how to expand the previous effort by integrating the SWAT model with the FEST-C (CMAQ/WRF/EPIC) modeling system, as well as to demonstrate application of the Integrated Modeling System (IMS) to the Mississippi River basin (MRB) to simulate streamflow and dissolved N loadings to the Gulf of Mexico (GOM). IMS simulation results generally agree with US Geological Survey (USGS) observations/estimations; the annual simulated streamflow is 218.9 mm and USGS observation is 211.1 mm and the annual simulated dissolved N is 2.1 kg ha-1 and the USGS estimation is 2.8 kg ha-1. Integrating SWAT with the CMAQ/WRF/EPIC modeling system allows for its use within large river basins without losing EPIC's more detailed biogeochemistry processes, which will strengthen the assessment of impacts of future climate scenarios, regulatory and voluntary programs for N oxide air emissions, and land use and land management on N transport and transformation in large river basins.