Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17601, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080452

RESUMEN

Biodegradable poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) triblock copolymer could potentially be used in bioplastic applications because it is more flexible than PLLA. However, investigations into modifying PLLA-PEG-PLLA with effective fillers are still required. In this work, bamboo biochar (BC) was used as an eco-friendly and cost-effective filler for the flexible PLLA-PEG-PLLA. The influences of BC addition on crystallization properties, thermal stability, hydrophilicity, and mechanical properties of the PLLA-PEG-PLLA were explored and compared to those of the PLLA. The PLLA-PEG-PLLA matrix and BC filler were found to have strong interfacial adhesion and good phase compatibility, while the PLLA/BC composites displayed weak interfacial adhesion and poor phase compatibility. For the PLLA-PEG-PLLA, the addition of BC induced a nucleation effect that was characterized by a decrease in the cold crystallization temperature from 76 to 71-75 °C and an increase in the crystallinity from 18.6 to 21.8-24.0%; however, this effect was not observed for the PLLA. When compared to pure PLLA-PEG-PLLA, the PLLA-PEG-PLLA/BC composites displayed greater thermal stability, tensile stress, and Young's modulus. Temperature at maximum decomposition rate (Td,max) of PLLA end-blocks increased from 315 to 319-342 °C. Ultimate tensile stress of PLLA-PEG-PLLA matrix improved from 14.5 to 16.2-22.6 MPa and Young's modulus increased from 220 to 280-340 MPa. Based on the findings, the crystallizability, thermal stability, and mechanical properties of the flexible PLLA-PEG-PLLA bioplastic were all enhanced by the use of BC as a multi-functional filler.


Asunto(s)
Carbón Orgánico , Poliésteres , Polietilenglicoles , Poliésteres/química , Polietilenglicoles/química , Carbón Orgánico/química , Materiales Biocompatibles/química , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Cristalización
2.
Polymers (Basel) ; 16(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065395

RESUMEN

Polymer blends of poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) and high-density polyethylene (HDPE) with different blend ratios were prepared by a melt blending method. The thermal, morphological, mechanical, opacity, and biodegradation properties of the PLLA-PEG-PLLA/HDPE blends were investigated and compared to the PLLA/HDPE blends. The blending of HDPE improved the crystallization ability and thermal stability of the PLLA-PEG-PLLA; however, these properties were not improved for the PLLA. The morphology of the blended films showed that the PLLA-PEG-PLLA/HDPE blends had smaller dispersed phases compared to the PLLA/HDPE blends. The PLLA-PEG-PLLA/HDPE blends exhibited higher flexibility, lower opacity, and faster biodegradation and bioerosion in soil than the PLLA/HDPE blends. Therefore, these PLLA-PEG-PLLA/HDPE blends have a good potential for use as flexible and partially biodegradable materials.

3.
Polymers (Basel) ; 16(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38932010

RESUMEN

High-molecular-weight poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) is a flexible and biodegradable bioplastic that has promising potential in flexible food packaging but it has no antibacterial ability. Thus, in this work, the effect of zinc oxide nanoparticles (nano-ZnOs) which have antimicrobial activity on various properties of PLLA-PEG-PLLA was determined. The addition of nano-ZnOs enhanced the crystallization, tensile, UV-barrier, and antibacterial properties of PLLA-PEG-PLLA. However, the crystallization and tensile properties of nanocomposite films decreased again as the nano-ZnO increased beyond 2 wt%. The nano-ZnO was well distributed in the PLLA-PEG-PLLA matrix when the nano-ZnO content did not exceed 2 wt% and exhibited some nano-ZnO agglomerates when the nano-ZnO content was higher than 2 wt%. The thermal stability and moisture uptake of the PLLA-PEG-PLLA matrix decreased and the film's opacity increased as the nano-ZnO content increased. The PLLA-PEG-PLLA/ZnO nanocomposite films showed good antibacterial activity against bacteria such as Escherichia coli and Staphylococcus aureus. It can be concluded that nano-ZnOs can be used as a multi-functional filler of the flexible PLLA-PEG-PLLA. As a result, the addition of nano-ZnOs as a nucleating, reinforcing, UV-screening, and antibacterial agent in the flexible PLLA-PEG-PLLA matrix may provide protection for both the food and the packaging during transportation and storage.

4.
Polymers (Basel) ; 16(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611233

RESUMEN

Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) shows promise for use in bioplastic applications due to its greater flexibility over PLLA. However, further research is needed to improve PLLA-PEG-PLLA's properties with appropriate fillers. This study employed zinc phenylphosphate (PPZn) as a multi-functional filler for PLLA-PEG-PLLA. The effects of PPZn addition on PLLA-PEG-PLLA characteristics, such as crystallization and thermal and mechanical properties, were investigated. There was good phase compatibility between the PPZn and PLLA-PEG-PLLA. The addition of PPZn improved PLLA-PEG-PLLA's crystallization properties, as evidenced by the disappearance of the cold crystallization temperature, an increase in the crystallinity, an increase in the crystallization temperature, and a decrease in the crystallization half-time. The PLLA-PEG-PLLA's thermal stability and heat resistance were enhanced by the addition of PPZn. The PPZn addition also enhanced the mechanical properties of the PLLA-PEG-PLLA, as demonstrated by the rise in ultimate tensile stress and Young's modulus. We can conclude that the PPZn has potential for use as a multi-functional filler for the PLLA-PEG-PLLA composite due to its nucleating-enhancing, thermal-stabilizing, and reinforcing ability.

5.
Polymers (Basel) ; 15(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37836015

RESUMEN

Flexible poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) block copolymer (PLLA-PEG-PLLA) bioplastic has been blended with low-cost thermoplastic starch (TPS) to prepare fully biodegradable bioplastics. However, the mechanical properties of PLLA-PEG-PLLA matrix decrease after the addition of TPS. In this work, citric acid (CA) was used as a compatibilizer to improve the phase compatibility and mechanical properties of PLLA-PEG-PLLA/TPS blends. TPS was first modified with CA (1.5 %wt, 3 %wt, and 4.5%wt) before melt blending with PLLA-PEG-PLLA. The PLLA-PEG-PLLA/modified TPS ratio was constant at 60/40 by weight. CA modification of TPS suppressed the crystallinity and enhanced the thermal stability of the PLLA-PEG-PLLA matrix, as determined through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The compatibility between the dispersed TPS and PLLA-PEG-PLLA phases was improved through modification of TPS with CA, as revealed by the smaller size of the co-continuous TPS phase from scanning electron microscopy (SEM) analysis. Increasing the hydrophilicity of the blends containing modified TPS confirmed the improvement in phase compatibility of the components. From the tensile test, the ultimate tensile strength, elongation at break, and Young's modulus of the blends increased with the CA content. In conclusion, CA showed a promising behavior in improving the phase compatibility and mechanical properties of PLLA-PEG-PLLA/TPS blends. These PLLA-PEG-PLLA/modified TPS blends have potential to be used as flexible bioplastic products.

6.
Polymers (Basel) ; 15(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37571085

RESUMEN

Sugarcane bagasse and rice straw are major agricultural byproducts often discarded or burned as waste after cultivation, leaving their untapped potential for utilization. In this work, cellulose fibers were extracted from sugarcane bagasse and rice straw using a simple procedure: alkaline treatment with sodium hydroxide, bleaching with sodium hypochlorite, and acid hydrolysis. The obtained cellulosic materials were successfully prepared into milky white and transparent films, of which the transparency slightly decreased with the addition of glycerol. The surface of all the films appeared homogeneous with a random orientation of fibers. The rice-straw (RS) film had a more fragile texture than the sugarcane-bagasse (SBG) film. The FTIR analysis clearly indicated the functional groups of cellulose, as well as glycerol for the films mixed with glycerol. Thermal analysis showed that the native SBG film decomposed at 346 °C, higher than the native RS film (339 °C). The presence of glycerol in the films resulted in slightly lower maximum decomposition temperature (Td,max) values as well as mechanical properties. Regarding water susceptibility, the RS film had a higher percentage than the native SBG and glycerol-mixed SBG films. The extracted cellulose from both sources could form almost spherical-shaped cellulose particles. Thus, through the simple extraction method, sugarcane bagasse and rice straw could serve as excellent sources of cellulose materials for preparing cellulose films and particles, which would be advantageous to the development of cellulose-based materials.

7.
Int J Biol Macromol ; 230: 123172, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639081

RESUMEN

Poly(l-lactide)-b-poly(ethylene glycol)-b-poly(l-lactide) block copolymer (PLLA-PEG-PLLA) is a highly flexible bioplastic, yet its use in practical applications is limited due to its poor heat resistance and high production cost. In this study, talcum was used as a nucleating agent to improve the heat resistance, and thermoplastic starch (TPS) was used as a low-cost filler to reduce the cost of production. PLLA-PEG-PLLA/talcum/TPS and PLLA/talcum/TPS ternary composites with 4 wt% talcum and various TPS contents were prepared by melt blending before injection molding and were then evaluated. When PEG middle-blocks were present, the PLLA-PEG-PLLA-based composites showed a higher crystallinity, more flexibility, and a higher heat resistance than the PLLA-based composites. Although the addition of TPS decreased the heat resistance of all the composites, the PLLA-PEG-PLLA/talcum/TPS composites still had high Vicat softening temperatures (VST, 113-131 °C) and demonstrated a good dimensional stability to heat by maintaining their original shapes upon heat exposure. The biodegradation test in soil suggested that the synergistic effect of the PEG middle-blocks and TPS significantly increased the biodegradability of the PLLA-PEG-PLLA/talcum/TPS composites. This improved heat resistance, lower cost, and accelerated biodegradation make PLLA-PEG-PLLA/talcum/TPS composites a promising material to be used as heat-resistant and single-use bioplastic products.


Asunto(s)
Calor , Almidón , Polietilenglicoles , Poliésteres
8.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679183

RESUMEN

Poly(L-lactide) (PLLA) is a promising candidate as a bioplastic because of its non-toxicity and biodegradability. However, the low flexibility of PLLA limits its use in many applications. Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-b-PEG-b-PLLA) block copolymer is of interest for bioplastic applications due to its superior flexibility compared to PLLA. The aim of this work is to modify PLLA-b-PEG-b-PLLA using a low-cost calcium carbonate (CaCO3) filler to improve material properties compared to PLLA/CaCO3 composites. The addition of CaCO3 enhanced the crystallinity and thermal stability for the PLLA-b-PEG-b-PLLA matrix but not for the PLLA matrix, as determined by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). Phase morphology investigation using scanning electron microscopy (SEM) revealed that the interfacial adhesion between PLLA-b-PEG-b-PLLA and CaCO3 was stronger than between PLLA and CaCO3. Additionally, tensile testing was carried out to determine the mechanical properties of the composites. With the addition of CaCO3, the tensile stress and Young's modulus of the PLLA-b-PEG-b-PLLA matrix were increased, whereas these properties of the PLLA matrix were significantly decreased. Thus, CaCO3 shows great promise as an inexpensive filler that can induce nucleation and reinforcing effects for PLLA-b-PEG-b-PLLA bioplastics.

9.
Polymers (Basel) ; 15(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38231905

RESUMEN

Plastic waste has become a big problem for the environment globally. Biodegradable polymers are a potential replacement for plastics that can have a positive outcome both environmentally and economically. In this work, we used acid hydrolysis and alkaline treatment to extract cellulose fibers from cattails. The obtained cellulose was used as a substrate for the fabrication of cellulose film using a casting technique on plastic plates. Different concentrations of the plasticizer, glycerol, were used to prepare films for comparison, and its effects on the film's characteristics were observed. The morphology, chemical structure, and thermal stability of the cattail cellulose (CTC) films were studied using techniques such as scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA), respectively. Measurements of transparency, moisture content (MC), water solubility (MS), and water contact angle (WCA) were also performed. Introducing glycerol into the films increased the transparency, MC, and WS values, as well as the gap width between film textures. However, it resulted in a decrease in the WCA of the films, showing that the hydrophilicity of the films is increased by the addition of glycerol. The interaction between the functional groups of cellulose and glycerol was established from the ATR-FTIR and XRD data. The obtained results indicated that glycerol affected the thermal stability and the degree of crystallinity of the produced films. Accordingly, the hydrophilicity of the cellulose film was increased by increasing the glycerol content; therefore, cattail cellulose films can be used as a biodegradable alternative to plastic in the future.

10.
Polymers (Basel) ; 14(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36236039

RESUMEN

High-molecular-weight poly(L-lactide) (HMW-PLLA) is a promising candidate for use as a bioplastic because of its biodegradability and compostability. However, the applications of HMW-PLLA have been limited due to its poor crystallizability. In this work, stereocomplex polylactide (scPLA) powder was prepared by precipitation of a low-molecular-weight poly(L-lactide)/poly(D-lactide) (LMW-PLLA/LMW-PDLA) blend solution and investigated for use as a fully-biodegradable nucleating agent for HMW-PLLA compared to LMW-PLLA powder. The obtained LMW-PLLA and scPLA powders with a nearly spherical shape showed complete homo- and stereocomplex crystallites, respectively. HMW-PLLA/LMW-PLLA powder and HMW-PLLA/scPLA powder blends were prepared by melt blending. The LMW-PLLA powder was homogeneously melted in the HMW-PLLA matrices, whereas the scPLA powder had good phase compatibility and was well-dispersed in the HMW-PLLA matrices, as detected by scanning electron microscopy (SEM). It was shown that the enthalpies of crystallization (ΔHc) upon cooling scans for HMW-PLLA largely increased and the half crystallization time (t1/2) dramatically decreased as the scPLA powder content increased; however, the LMW-PLLA powder did not exhibit the same behavior, as determined by differential scanning calorimetry (DSC). The crystallinity content of the HMW-PLLA/scPLA powder blends significantly increased as the scPLA powder content increased, as determined by DSC and X-ray diffractometry (XRD). In conclusion, the fully biodegradable scPLA powder showed good potential for use as an effective nucleating agent to improve the crystallization properties of the HMW-PLLA bioplastic.

11.
Pak J Biol Sci ; 25(2): 131-136, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35234001

RESUMEN

<b>Background and Objective:</b> Various medicinal herbs and fruits in Thailand composed of many bioactive phytochemicals, which are support health and reduce the harmful of many diseases. The main objectives of this study were to extract wild grape residues obtained from wine production and fractionate them by silica column chromatography and investigate the chemical substances and antioxidant competency. <b>Materials and Methods:</b> Methanolic crude extract of wild grape pomace was fractionated by silica gel chromatography using the mixture methanol/ethyl acetate as eluting solvents. The chemical substances including total phenolic, flavonoid, saponin and condensed-tannin were investigated by colorimetric spectrophotometer. The antioxidant activities with free radical scavenging (DPPH and ABTS) and reducing power antioxidants (FRAP and CUPRAC) were tested. Finally, High Performance Liquid Chromatography (HPLC) was applied for the analysis of the individual phenolic compounds. <b>Results:</b> The fractionated extracts had higher chemical substances than crude extract, except total phenolic. Among the substances, condensed-tannins showed the highest content in the fractionated extracts. The active substances showed higher ABTS free radical scavenging activity than DPPH and metal-reducing power antioxidant by CUPRAC than FRAP assays. The dominant phenolic substances in the fractionated extracts were gallic acid, resveratrol, quercetin, epicatechin and caffeic acid. <b>Conclusion:</b> The pomace of immature wild grape fruits from wine production contained various types of chemical substances and antioxidant competency. The obtained results provide more information on the wild grape fruits in terms of phytochemical source and their activity.


Asunto(s)
Antioxidantes , Vitis , Antioxidantes/química , Flavonoides/análisis , Fenoles/análisis , Fitoquímicos/análisis , Extractos Vegetales/química
12.
Pak J Biol Sci ; 23(8): 1066-1074, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32700858

RESUMEN

BACKGROUND AND OBJECTIVE: Study on medicinal plant extract is gradually interested and distributed, especially their biological activities. The present study aimed to determine the enzyme inhibition and antimicrobial activities of the fractionated extracts of wild grape (Ampelocissus martinii Planch.) seeds. MATERIALS AND METHODS: Wild grape seeds in different growth stages were extracted with methanol before fractionation by silica gel chromatography. The anti-glucosidase and anti-tyrosinase enzyme activities of the extracts were then tested by using UV-Vis spectrophotometry and antimicrobial activities were observed from MIC, MBC values and time killing assay. RESULTS: The sub-fraction of immature stage eluted by ethyl acetate/methanol at 75/25 (%v/v) has the highest enzyme inhibition activity and the most potent efficiency for time kills profiles. The MIC values of the potent immature, mature and ripe fractioned extracts were ranging from 1.25-50.00, 1.25-50.00 and 1.56-25.00 mg mL-1, respectively, while the MBC values ranged from 3.12-6.25, 3.12-25.00 and 3.12-25.00 mg mL-1, respectively. CONCLUSION: The wild grape seed composed of α-glucosidase and tyrosinase inhibition and antibacterial activities compounds. The wild grape seed extracts may be used as active ingredients sources of health-supporting products or cosmetics.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Extractos Vegetales/farmacología , Semillas/química , Vitis/embriología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA