Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064923

RESUMEN

Hydrotalcite-derived materials are eco-friendly, cheap, and efficient catalysts of different reactions. However, their application in liquid-phase hydrogenation could be more extensive. Hence, this work concerns the application of three hydrotalcite-derived materials with different CuZnAl molar ratios in the liquid-phase continuous-flow hydrogenation of 2-methyl-2-pentenal (MPEA) at a wide range of temperature (298-378 K) and pressure (1 × 106-6 × 106 Pa). The catalytic investigations were supported by catalysts characterization by ICP-OES, TPR, in situ XRD, XPS, NH3-TPD, CO2-TPD, and TEM measurements on different stages of their biography. It was shown that the catalytic activity of these samples is related to the Cu0/Cu+ ratio. Depending on the reaction conditions, selectivity control is possible. All catalysts were 100% selective to 2-methylpentanal (MPAA)-sedative drug precursor, with low conversion, at temperatures ≤ 338 K at every pressure. However, the selectivity of the second desired product, fragrance intermediate, 2-methyl-2-penten-1-ol (MPEO), increased significantly at higher temperatures and pressures. It reached the unique value of 54% with 60% substrate conversion at 378 K and 6 × 106 Pa for the catalyst with the highest Cu loading. It was revealed that the production of significant amounts of MPEO is related to the reaction conditions, the Cu+ predominance on the surface, the hydrogen spillover effect, and the acid-base properties of these systems.

2.
Sci Total Environ ; 644: 287-297, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981976

RESUMEN

Herein, it is presented a catalytic system for gas-phase hydrodechlorination of tetrachloromethane at low temperature and atmospheric pressure, using iridium supported on silica as parent catalyst. Iridium electronic configuration is suitable to catalyse the hydrodechlorination reactions, however, it has been rarely used in this reaction to date. The catalytic abilities were significantly improved when a second transition metal was added. Catalysts' stability and selectivity to the desired products (i.e. C1-C4 hydrocarbons) improved compared to conventional activation in hydrogen when catalysts were activated shortly with microwave irradiation. Microwave irradiation of catalysts favourably influences the homogeneity of the metallic active phase, both in terms of the size of metal crystals and the homogeneity of bimetallic systems. Addition of platinum to the 'parent' iridium catalyst improved its catalytic properties and decreased deactivation. Fresh and spent catalysts were comprehensively characterized using several techniques (BET, CO-chemisorption, XRD, XPS, electron microscopy and mass spectrometry) to determine structure-activity relationships and potential causes for catalyst deactivation. No significant changes in crystalline size or bimetallic phase composition were observed for spent catalysts (with the exception of Ir-Pd catalysts which underwent bulk carbide during the reaction).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA