RESUMEN
Titanium (Ti) nanotopography modulates the osteogenic response to exogenous bone morphogenetic protein 7 (BMP-7) in vitro, supporting enhanced alkaline phosphatase mRNA expression and activity, as well as higher osteopontin (OPN) mRNA and protein levels. As the biological effects of OPN protein are modulated by its proteolytic cleavage by serum proteases, this in vitro study evaluated the effects on osteogenic cells in the presence of a physiological blood clot previously formed on a BMP-7-coated nanostructured Ti surface obtained by chemical etching (Nano-Ti). Pre-osteoblastic MC3T3-E1 cells were cultured during 5 days on recombinant mouse (rm) BMP-7-coated Nano-Ti after it was implanted in adult female C57BI/6 mouse dorsal dermal tissue for 18 h. Nano-Ti without blood clot or with blood clot at time 0 were used as the controls. The presence of blood clots tended to inhibit the expression of key osteoblast markers, except for Opn, and rmBMP-7 functionalization resulted in a tendency towards relatively greater osteoblastic differentiation, which was corroborated by runt-related transcription factor 2 (RUNX2) amounts. Undetectable levels of OPN and phosphorylated suppressor of mothers against decapentaplegic (SMAD) 1/5/9 were noted in these groups, and the cleaved form of OPN was only detected in the blood clot immediately prior to cell plating. In conclusion, the strategy to mimic in vitro the initial interfacial in vivo events by forming a blood clot on a Ti nanoporous surface resulted in the inhibition of pre-osteoblastic differentiation, which was minimally reverted with an rmBMP-7 coating.
RESUMEN
This study evaluates the effects of the availability of exogenous BMP-7 on osteoblastic cells' differentiation on a nanotextured Ti surface obtained by chemical etching (Nano-Ti). The MC3T3-E1 and UMR-106 osteoblastic cell lines were cultured for 5 and 7 days, respectively, on a Nano-Ti surface and on a control surface (Control-Ti) in an osteogenic medium supplemented with either 40 or 200 ng/mL recombinant mouse (rm) BMP-7. The results showed that MC3T3-E1 cells exhibited distinct responsiveness when exposed to each of the two rmBMP-7 concentrations, irrespective of the surface. Even with 40 ng/mL rmBMP-7, important osteogenic effects were noticed for Control-Ti in terms of cell proliferation potential; Runx2, Osx, Alp, Bsp, Opn, and Smad1 mRNA expression; and in situ ALP activity. For Nano-Ti, the effects were limited to higher Alp, Bsp, and Opn mRNA expression and in situ ALP activity. On both surfaces, the osteogenic potential of UMR-106 cultures remained unaltered with 40 ng/mL rmBMP-7, but it was significantly reduced when the cultures were exposed to the 200 ng/mL concentration. The availability of rmBMP-7 to pre-osteoblastic cells at the concentrations used alters the expression profile of osteoblast markers, indicative of the acquisition of a more advanced stage of osteoblastic differentiation. This occurs less pronouncedly on the nanotextured Ti and without reflecting in higher mineralized matrix production by differentiated osteoblasts on both surfaces.
RESUMEN
The study aimed to identify an effective mechanism of adsorption of polyphenols on a nano-textured Ti surface and to evaluate the osteogenic differentiation on it. The source of polyphenols was a natural extract from red grape pomace. A chemical etching was used to form an oxide layer with a nanoscale texture on Ti; this layer is hydrophilic, but without hydroxyl groups with high acidic-basic chemical reactivity. The samples were characterized by electron and fluorescence microscopies, UV-Vis spectroscopy, contact angle measurements, zeta potential titration curves, and Folin-Ciocâlteu test. The presence of an adsorbed layer of polyphenols on the functionalized surface, maintaining redox ability, was confirmed by several tests. Consistent with the surface features, the adsorption was maximized by dissolving the extract in a high-amino acid medium, with respect to an inorganic solution, exploiting the high affinity of amino acids for polyphenols and for porous titanium surfaces. The osteogenic differentiation was assessed on an osteoblastic cell line by immunofluorescence, cell viability, expression of key osteoblast markers, and extracellular matrix mineralization. The surfaces functionalized with the extract diluted in the range 1 × 10-5-1 mg/mL resulted in having a greater osteogenic activity for the highest concentration, with lower values of cell viability; higher expression of alkaline phosphatase, bone sialoprotein, and collagen; and lower levels of osteopontin. In conclusion, the functionalization of a nano-textured Ti surface with polyphenols can potentially favor the osteogenic activity of osseointegrated implants.