Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 98(9)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35833268

RESUMEN

More than 200 root-nodule bacterial strains were isolated from Leucaena leucocephala growing at 42 sampling sites across 12 states and three union territories of India. Genetic diversity was observed among 114 strains from various climatic zones; based on recA, these were identified as strains of Ensifer, Mesorhizobium, Rhizobium, and Bradyrhizobium. In multilocus sequence analysis (MLSA) strains clustered into several novel clades and lineages. Ensifer were predominant nodulating genotype isolated from majority of alkaline soils, while Mesorhizobium and Rhizobium strains were isolated from a limited sampling in North-Eastern states with acidic soils. Positive nodulation assays of selected Ensifer representing different genetic combinations of housekeeping and sym genes suggested their broad host range within the closely related mimosoid genera Vachellia, Senegalia, Mimosa, and Prosopis. Leucaena selected diverse strains of Ensifer and Mesorhizobium as symbionts depending on available soil pH, climatic, and other edaphic conditions in India. Lateral gene transfer seems to play a major role in genetic diversification of Ensifer exhibited in terms of Old World vs. Neotropical genetic make-up and mixed populations at several sites. Although Neotropical Ensifer strains were most symbiotically effective on Leucaena, the native Ensifer are promiscuous and particularly well-adapted to a wide range of sampling sites with varied climates and edaphic factors.


Asunto(s)
Fabaceae , Mesorhizobium , Rhizobiaceae , Rhizobium , ADN Bacteriano , Transferencia de Gen Horizontal , Filogenia , ARN Ribosómico 16S , Nódulos de las Raíces de las Plantas , Suelo , Simbiosis
2.
New Phytol ; 235(6): 2365-2377, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35901264

RESUMEN

Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.


Asunto(s)
Fabaceae , Rhizobium , Ecosistema , Fabaceae/genética , Nitrógeno , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas , Simbiosis
3.
FEMS Microbiol Ecol ; 94(11)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184201

RESUMEN

Nodules of Chamaecrista pumila growing in several locations in India were sampled for anatomical studies and for characterization of their rhizobial microsymbionts. Regardless of their region of origin, the nodules were indeterminate with their bacteroids contained within symbiosomes which were surrounded by pectin. More than 150 strains were isolated from alkaline soils from the Thar Desert (Rajasthan), wet-acidic soils of Shillong (Meghalaya), and from trap experiments using soils from four other states with different agro-ecological regions. Molecular phylogenetic analysis based on five housekeeping (rrs, recA, glnII, dnaK andatpD) and two symbiotic (nodA and nifH) genes was performed for selected strains. Chamaecrista pumila was shown to be nodulated by niche-specific diverse strains of either Ensifer or Bradyrhizobium in alkaline (Thar Desert) to neutral (Tamil Nadu) soils and only Bradyrhizobium strains in acidic (Shillong) soils. Concatenated core gene phylogenies showed four novel Ensifer-MLSA types and nine Bradyrhizobium-MLSA types. Genetically diverse Ensifer strains harbored similar sym genes which were novel. In contrast, significant symbiotic diversity was observed in the Bradyrhizobium strains. The C. pumila strains cross-nodulated Vigna radiata and some wild papilionoid and mimosoid legumes. It is suggested that soil pH and moisture level played important roles in structuring the C. pumila microsymbiont community.


Asunto(s)
Bradyrhizobium/aislamiento & purificación , Chamaecrista/microbiología , Rhizobiaceae/aislamiento & purificación , Microbiología del Suelo , Bradyrhizobium/clasificación , Bradyrhizobium/genética , Chamaecrista/anatomía & histología , Chamaecrista/ultraestructura , Clima , Concentración de Iones de Hidrógeno , India , Filogenia , Rhizobiaceae/clasificación , Rhizobiaceae/genética , Nódulos de las Raíces de las Plantas/anatomía & histología , Nódulos de las Raíces de las Plantas/ultraestructura , Suelo/química , Simbiosis/genética
4.
Nat Ecol Evol ; 2(7): 1104-1111, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29807995

RESUMEN

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Bosques , Lluvia , Árboles/crecimiento & desarrollo , América Central , Densidad de Población , Puerto Rico , América del Sur
5.
Trends Plant Sci ; 23(6): 539-550, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29559299

RESUMEN

Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF.


Asunto(s)
Productos Agrícolas/metabolismo , Fabaceae/metabolismo , Fijación del Nitrógeno , Nitrógeno/metabolismo , Agua/metabolismo , Transporte Biológico , Productos Agrícolas/genética , Fabaceae/genética , Fitomejoramiento , Estomas de Plantas/fisiología
6.
Ecology ; 99(2): 502, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29226306

RESUMEN

How species interactions shape global biodiversity and influence diversification is a central - but also data-hungry - question in evolutionary ecology. Microbially based mutualisms are widespread and could cause diversification by ameliorating stress and thus allowing organisms to colonize and adapt to otherwise unsuitable habitats. Yet the role of these interactions in generating species diversity has received limited attention, especially across large taxonomic groups. In the massive angiosperm family Leguminosae, plants often associate with root-nodulating bacteria that ameliorate nutrient stress by fixing atmospheric nitrogen. These symbioses are ecologically-important interactions, influencing community assembly, diversity, and succession, contributing ~100-290 million tons of N annually to natural ecosystems, and enhancing growth of agronomically-important forage and crop plants worldwide. In recent work attempting to determine whether mutualism with N-fixing bacteria led to increased diversification across legumes, we were unable to definitively resolve the relationship between diversification and nodulation. We did, however, succeed in compiling a very large searchable, analysis-ready database of nodulation data for 749 legume genera (98% of Leguminosae genera; LPWG 2017), which, along with associated phylogenetic information, will provide a valuable resource for future work addressing this question and others. For each legume genus, we provide information about the species richness, frequency of nodulation, subfamily association, and topological correspondence with an additional data set of 100 phylogenetic trees curated for database compatibility. We found 386 legume genera were confirmed nodulators (i.e., all species examined for nodulation nodulated), 116 were non-nodulating, four were variable (i.e., containing both confirmed nodulators and confirmed non-nodulators), and 243 had not been examined for nodulation in published studies. Interestingly, data exploration revealed that nodulating legume genera are ~3 × more species-rich than non-nodulating genera, but we did not find evidence that this difference in diversity was due to differences in net diversification rate. Our metadata file describes in more detail the structure of these data that provide a foundational resource for future work as more nodulation data become available, and as greater phylogenetic resolution of this ca. 19,500-species family comes into focus. We release this data set under the Creative Commons 4.0 Attribution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/). The data may be used, distributed, and reproduced with proper citation of this article.

7.
Syst Appl Microbiol ; 40(6): 334-344, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28781100

RESUMEN

Root nodule bacterial strains were isolated from the little-studied legumes Eriosema chinense and Flemingia vestita (both in tribe Phaseoleae, Papilionoideae) growing in acidic soil of the sub-Himalayan region of the Indian state of Meghalaya (ME), and were identified as novel strains of Bradyrhizobium on the basis of their 16S rRNA sequences. Seven isolates selected on the basis of phenotypic characters and assessment of ARDRA and RAPD patterns were subjected to multilocus sequence analysis (MLSA) using four protein-coding housekeeping genes (glnII, recA, dnaK and gyrB). On the basis of 16S rRNA phylogeny as well as a concatenated MLSA five strains clustered in a single separate clade and two strains formed novel lineages within the genus Bradyrhizobium. The phylogenies of the symbiotic genes (nodA and nifH) were in agreement with the core gene phylogenies. It appears that genetically diverse Bradyrhizobium strains are the principal microsymbionts of these two important native legumes. The novel genotypes of Bradyrhizobium strains isolated in the present study efficiently nodulate the Phaseoloid crop species Glycine max, Vigna radiata and Vigna umbellata. These strains are genetically different from strains of Bradyrhizobium isolated earlier from a different agro-climatic region of India suggesting that the acidic nature of the soil, high precipitation and other local environmental conditions are responsible for the evolution of these newly-described Bradyrhizobium strains. In global terms, the sub-Himalayan region of India is geographically and climatically distinct and the Bradyrhizobium strains nodulating its legumes appear to be novel and potentially unique to the region.


Asunto(s)
Bradyrhizobium/citología , Bradyrhizobium/genética , Fabaceae/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Bradyrhizobium/aislamiento & purificación , Ambiente , Genes Bacterianos , Genes Esenciales , Genoma Bacteriano , India , Tipificación de Secuencias Multilocus , Fenotipo , Filogenia , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis/genética
8.
New Phytol ; 215(1): 40-56, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28211601

RESUMEN

Contents 40 I. 40 II. 41 III. 44 IV. 48 V. 49 VI. 49 VII. 52 VIII. 53 53 References 53 SUMMARY: In the last decade, analyses of both molecular and morphological characters, including nodulation, have led to major changes in our understanding of legume taxonomy. In parallel there has been an explosion in the number of genera and species of rhizobia known to nodulate legumes. No attempt has been made to link these two sets of data or to consider them in a biogeographical context. This review aims to do this by relating the data to the evolution of the two partners: it highlights both longitudinal and latitudinal trends and considers these in relation to the location of major land masses over geological time. Australia is identified as being a special case and latitudes north of the equator as being pivotal in the evolution of highly specialized systems in which the differentiated rhizobia effectively become ammonia factories. However, there are still many gaps to be filled before legume nodulation is sufficiently understood to be managed for the benefit of a world in which climate change is rife.


Asunto(s)
Fabaceae/fisiología , Fijación del Nitrógeno , Biodiversidad , Evolución Biológica , Fabaceae/clasificación , Fabaceae/microbiología , Filogeografía , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis
9.
Syst Appl Microbiol ; 39(8): 534-545, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27771162

RESUMEN

Phylogenetically diverse Ensifer strains associated with five species of Tephrosia growing in alkaline soils of semi-arid regions of the Thar Desert were characterized using multi locus sequence analysis. Based on 16S rRNA and four protein-coding housekeeping gene (recA, atpD, glnII and dnaK) sequences, the Tephrosia-Ensifer strains were genetically different from the type strains of Ensifer saheli, Ensifer kostiensis, Ensifer terangae (African origin) and Ensifer psoraleae (Asiatic origin). One strain, Ensifer sp. TL4, showed maximum similarity (99%) to Ensifer adhaerens LMG 20216T and formed a separate lineage close to it. Phylogenetic incongruence between sym and housekeeping genes was observed. The monophyletic origin of symbiotic genes from Asia in the Tephrosia-Ensifer strains from the Thar Desert suggests that they might have been acquired from a common ancestor and horizontally transferred. These novel strains are promiscuous, cross-nodulating some papilionoid crop species, mimosoid trees and the caesalpinioid Chamaecrista pumila. This study improves understanding of the distribution of Ensifer in unexplored and threatened alkaline arid regions of the Thar Desert and how this relates to other similar regions in the world.


Asunto(s)
ADN Bacteriano/genética , Genes Esenciales/genética , Rhizobiaceae/clasificación , Rhizobiaceae/genética , Tephrosia/microbiología , Secuencia de Bases , Clima Desértico , Chaperonas Moleculares/genética , Tipificación de Secuencias Multilocus , Filogenia , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rhizobiaceae/aislamiento & purificación , Análisis de Secuencia de ADN , Microbiología del Suelo , Simbiosis/fisiología , Factores de Transcripción/genética
10.
Appl Environ Microbiol ; 82(17): 5099-115, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27316955

RESUMEN

UNLABELLED: Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE: This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.


Asunto(s)
Burkholderia/fisiología , Fabaceae/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Burkholderia/clasificación , Burkholderia/genética , Burkholderia/aislamiento & purificación , Fabaceae/clasificación , Especificidad del Huésped , Filogenia , Sudáfrica , América del Sur , Simbiosis
11.
Proc Natl Acad Sci U S A ; 113(15): 4098-103, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27035971

RESUMEN

Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates.


Asunto(s)
Fabaceae/fisiología , Fotosíntesis , Hojas de la Planta/fisiología , Agua , Ecosistema
12.
New Phytol ; 209(1): 319-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26214613

RESUMEN

The legume genus Mimosa has > 500 species, with two major centres of diversity, Brazil (c. 350 spp.) and Mexico (c. 100 spp.). In Brazil most species are nodulated by Burkholderia. Here we asked whether this is also true of native and endemic Mexican species. We have tested this apparent affinity for betaproteobacteria by examining the symbionts of native and endemic species of Mimosa in Mexico, especially from the central highlands where Mimosa spp. have diversified. Nodules were tested for betaproteobacteria using in situ immunolocalization. Rhizobia isolated from the nodules were genetically characterized and tested for their ability to nodulate Mimosa spp. Immunological analysis of 25 host taxa suggested that most (including all the highland endemics) were not nodulated by betaproteobacteria. Phylogenetic analyses of 16S rRNA, recA, nodA, nodC and nifH genes from 87 strains isolated from 20 taxa confirmed that the endemic Mexican Mimosa species favoured alphaproteobacteria in the genera Rhizobium and Ensifer: this was confirmed by nodulation tests. Host phylogeny, geographic isolation and coevolution with symbionts derived from very different soils have potentially contributed to the striking difference in the choice of symbiotic partners by Mexican and Brazilian Mimosa species.


Asunto(s)
Mimosa/microbiología , Rhizobium/genética , Simbiosis , Proteínas Bacterianas/genética , Secuencia de Bases , Evolución Biológica , Especificidad del Huésped , México , Filogenia , Nodulación de la Raíz de la Planta , Rhizobium/clasificación , Rhizobium/fisiología , Análisis de Secuencia de ADN
13.
Syst Appl Microbiol ; 39(1): 41-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26689612

RESUMEN

The South African Fynbos soils are renowned for nitrogen-fixing Burkholderia associated with diverse papilionoid legumes of the tribes Crotalarieae, Hypocalypteae, Indigofereae, Phaseoleae and Podalyrieae. However, despite numerous rhizobial studies in the region, the symbiotic diversity of Burkholderia has not been investigated in relation to a specific host legume and its geographical provenance. This study analyzed the diversity of nodulating strains of Burkholderia from the legume species Podalyria calyptrata. Diverse lineages were detected that proved to be closely related to Burkholderia taxa, originating from hosts in other legume tribes. By analyzing the genetic variation of chromosomal (recA) and nodulation (nodA) sequence data in relation to the sampling sites we assessed the geographical distribution patterns of the P. calyptrata symbionts. Although we found a degree of genetically differentiated rhizobial populations, a correlation between genetic (recA and nodA) and geographic distances among populations was not observed, suggesting high rates of dispersal and rhizobial colonization within Fynbos soils.


Asunto(s)
Burkholderia/clasificación , Burkholderia/aislamiento & purificación , Fabaceae/microbiología , Rhizobium/clasificación , Rhizobium/aislamiento & purificación , Microbiología del Suelo , Aciltransferasas/genética , Proteínas Bacterianas/genética , Biodiversidad , Burkholderia/genética , Variación Genética , Geografía , Fijación del Nitrógeno/genética , Filogenia , Nodulación de la Raíz de la Planta , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rhizobium/genética , Sudáfrica , Simbiosis
14.
FEMS Microbiol Ecol ; 91(2): 1-17, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25764552

RESUMEN

Rhizobial diversity and host preferences were assessed in 65 native Fynbos legumes of the papilionoid legume tribes Astragaleae, Crotalarieae, Genisteae, Indigofereae, Millettieae, Phaseoleae, Podalyrieae, Psoraleeae and Sesbanieae. Sequence analyses of chromosomal 16S rRNA, recA, atpD and symbiosis-related nodA, nifH genes in parallel with immunogold labelling assays identified the symbionts as alpha- (Azorhizobium, Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium) and beta-rhizobial (Burkholderia) lineages with the majority placed in the genera Mesorhizobium and Burkholderia showing a wide range of host interactions. Despite a degree of symbiotic promiscuity in the tribes Crotalarieae and Indigofereae nodulating with both alpha- and beta-rhizobia, Mesorhizobium symbionts appeared to exhibit a general host preference for the tribe Psoraleeae, whereas Burkholderia prevailed in the Podalyrieae. Although host genotype was the main factor determining rhizobial diversity, ecological factors such as soil acidity and site elevation were positively correlated with genetic variation within Mesorhizobium and Burkholderia, respectively, indicating an interplay of host and environmental factors on the distribution of Fynbos rhizobia.


Asunto(s)
Fabaceae/microbiología , Rhizobium/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética , Aciltransferasas/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Biodiversidad , Bradyrhizobium/genética , Burkholderia/clasificación , Burkholderia/genética , Especificidad del Huésped , Mesorhizobium/clasificación , Mesorhizobium/genética , Oxidorreductasas/genética , Filogenia , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rhizobium/clasificación , Sudáfrica
15.
Nat Commun ; 5: 4087, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912610

RESUMEN

Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis' evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of 'stable fixers' (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships.


Asunto(s)
Evolución Biológica , Magnoliopsida , Fijación del Nitrógeno , Simbiosis
16.
Microb Ecol ; 68(3): 542-55, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24801964

RESUMEN

The South African invasive legume Dipogon lignosus (Phaseoleae) produces nodules with both determinate and indeterminate characteristics in New Zealand (NZ) soils. Ten bacterial isolates produced functional nodules on D. lignosus. The 16S ribosomal RNA (rRNA) gene sequences identified one isolate as Bradyrhizobium sp., one isolate as Rhizobium sp. and eight isolates as Burkholderia sp. The Bradyrhizobium sp. and Rhizobium sp. 16S rRNA sequences were identical to those of strains previously isolated from crop plants and may have originated from inocula used on crops. Both 16S rRNA and DNA recombinase A (recA) gene sequences placed the eight Burkholderia isolates separate from previously described Burkholderia rhizobial species. However, the isolates showed a very close relationship to Burkholderia rhizobial strains isolated from South African plants with respect to their nitrogenase iron protein (nifH), N-acyltransferase nodulation protein A (nodA) and N-acetylglucosaminyl transferase nodulation protein C (nodC) gene sequences. Gene sequences and enterobacterial repetitive intergenic consensus (ERIC) PCR and repetitive element palindromic PCR (rep-PCR) banding patterns indicated that the eight Burkholderia isolates separated into five clones of one strain and three of another. One strain was tested and shown to produce functional nodules on a range of South African plants previously reported to be nodulated by Burkholderia tuberum STM678(T) which was isolated from the Cape Region. Thus, evidence is strong that the Burkholderia strains isolated here originated in South Africa and were somehow transported with the plants from their native habitat to NZ. It is possible that the strains are of a new species capable of nodulating legumes.


Asunto(s)
Burkholderia/fisiología , Fabaceae/microbiología , Especies Introducidas , Nodulación de la Raíz de la Planta , Burkholderia/genética , Genes Bacterianos , Nueva Zelanda , Filogenia , ARN Ribosómico 16S/genética , Sudáfrica
18.
Ann Bot ; 112(1): 179-96, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23712450

RESUMEN

BACKGROUND AND AIMS: The large monophyletic genus Mimosa comprises approx. 500 species, most of which are native to the New World, with Central Brazil being the main centre of radiation. All Brazilian Mimosa spp. so far examined are nodulated by rhizobia in the betaproteobacterial genus Burkholderia. Approximately 10 Mya, transoceanic dispersal resulted in the Indian subcontinent hosting up to six endemic Mimosa spp. The nodulation ability and rhizobial symbionts of two of these, M. hamata and M. himalayana, both from north-west India, are here examined, and compared with those of M. pudica, an invasive species. METHODS: Nodules were collected from several locations, and examined by light and electron microscopy. Rhizobia isolated from them were characterized in terms of their abilities to nodulate the three Mimosa hosts. The molecular phylogenetic relationships of the rhizobia were determined by analysis of 16S rRNA, nifH and nodA gene sequences. KEY RESULTS: Both native Indian Mimosa spp. nodulated effectively in their respective rhizosphere soils. Based on 16S rRNA, nifH and nodA sequences, their symbionts were identified as belonging to the alphaproteobacterial genus Ensifer, and were closest to the 'Old World' Ensifer saheli, E. kostiensis and E. arboris. In contrast, the invasive M. pudica was predominantly nodulated by Betaproteobacteria in the genera Cupriavidus and Burkholderia. All rhizobial strains tested effectively nodulated their original hosts, but the symbionts of the native species could not nodulate M. pudica. CONCLUSIONS: The native Mimosa spp. in India are not nodulated by the Burkholderia symbionts of their South American relatives, but by a unique group of alpha-rhizobial microsymbionts that are closely related to the 'local' Old World Ensifer symbionts of other mimosoid legumes in north-west India. They appear not to share symbionts with the invasive M. pudica, symbionts of which are mostly beta-rhizobial.


Asunto(s)
Especies Introducidas , Mimosa/microbiología , Rhizobium/fisiología , Simbiosis , Inoculantes Agrícolas/genética , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Biodiversidad , Burkholderia/genética , Burkholderia/aislamiento & purificación , Cupriavidus/genética , Cupriavidus/aislamiento & purificación , Genes Bacterianos , India , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , América del Sur
19.
Int J Syst Evol Microbiol ; 63(Pt 2): 435-441, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22467155

RESUMEN

Five strains, JPY461(T), JPY359, JPY389, DPU-3 and STM4206 were isolated from nitrogen-fixing nodules on the roots of Mimosa spp. and their taxonomic positions were investigated using a polyphasic approach. All five strains grew at 15-40 °C (optimum, 30-37 °C), at pH 4.0-8.0 (optimum, pH 6.0-7.0) and with 0-1 % (w/v) NaCl [optimum, 0 % (w/v)]. On the basis of 16S rRNA gene sequence analysis, a representative strain (JPY461(T)) showed 97.2 % sequence similarity to the closest related species Burkholderia acidipaludis SA33(T), a similarity of 97.2 % to Burkholderia terrae KMY02(T), 97.1 % to Burkholderia phymatum STM815(T) and 97.1 % to Burkholderia hospita LMG 20598(T). The predominant fatty acids of the five novel strains were summed feature 2 (comprising C(16 : 1) iso I and/or C(14 : 0) 3-OH), summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c), C(16 : 0) , C(16 : 0) 3-OH, C(17 : 0) cyclo, C(18 : 1)ω7c and C(19 : 0) cyclo ω8c. The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 63.0-65.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and several unidentified phospholipids. The DNA-DNA relatedness of the novel strain with respect to recognized species of the genus Burkholderia was less than 54 %. On the basis of 16S rRNA and recA gene sequence similarities, chemotaxonomic and phenotypic data, the five strains represent a novel species in the genus Burkholderia, for which the name Burkholderia diazotrophica sp. nov. is proposed with the type strain, JPY461(T) ( = LMG 26031(T) = BCRC 80259(T) = KCTC 23308(T)).


Asunto(s)
Burkholderia/clasificación , Mimosa/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Brasil , Burkholderia/genética , Burkholderia/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genes Bacterianos , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Fosfolípidos/análisis , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
PLoS One ; 7(10): e47677, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118889

RESUMEN

New Zealand became geographically isolated about 80 million years ago and this separation gave rise to a unique native flora including four genera of legume, Carmichaelia, Clianthus and Montigena in the Carmichaelinae clade, tribe Galegeae, and Sophora, tribe Sophoreae, sub-family Papilionoideae. Ten bacterial strains isolated from NZ Carmichaelinae growing in natural ecosystems grouped close to the Mesorhizobium huakuii type strain in relation to their 16S rRNA and nifH gene sequences. However, the ten strains separated into four groups on the basis of their recA and glnII sequences: all groups were clearly distinct from all Mesorhizobium type strains. The ten strains separated into two groups on the basis of their nodA sequences but grouped closely together in relation to nodC sequences; all nodA and nodC sequences were novel. Seven strains selected and the M. huakuii type strain (isolated from Astragalus sinicus) produced functional nodules on Carmichaelia spp., Clianthus puniceus and A. sinicus but did not nodulate two Sophora species. We conclude that rhizobia closely related to M. huakuii on the basis of 16S rRNA and nifH gene sequences, but with variable recA and glnII genes and novel nodA and nodC genes, are common symbionts of NZ Carmichaelinae.


Asunto(s)
Fabaceae , Mesorhizobium , Oxidorreductasas/genética , ARN Ribosómico 16S/genética , Simbiosis , Aciltransferasas/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Ecosistema , Evolución Molecular , Fabaceae/genética , Fabaceae/microbiología , Fabaceae/fisiología , Mesorhizobium/clasificación , Mesorhizobium/genética , Mesorhizobium/fisiología , N-Acetilglucosaminiltransferasas/genética , Nueva Zelanda , Filogenia , Rec A Recombinasas/genética , Rhizobium/clasificación , Rhizobium/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA