Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(3-1): 034120, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632764

RESUMEN

Diffusing diffusivity models, polymers in the grand canonical ensemble and polydisperse, and continuous-time random walks all exhibit stages of non-Gaussian diffusion. Is non-Gaussian targeting more efficient than Gaussian? We address this question, central to, e.g., diffusion-limited reactions and some biological processes, through a general approach that makes use of Jensen's inequality and that encompasses all these systems. In terms of customary mean first-passage time, we show that Gaussian searches are more effective than non-Gaussian ones. A companion paper argues that non-Gaussianity becomes instead highly more efficient in applications where only a small fraction of tracers is required to reach the target.

2.
Phys Rev Lett ; 132(11): 117101, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563912

RESUMEN

Redundancy in biology may be explained by the need to optimize extreme searching processes, where one or few among many particles are requested to reach the target like in human fertilization. We show that non-Gaussian rare fluctuations in Brownian diffusion dominates such searches, introducing drastic corrections to the known Gaussian behavior. Our demonstration entails different physical systems and pinpoints the relevance of diversity within redundancy to boost fast targeting. We sketch an experimental context to test our results: polydisperse systems.

3.
Soft Matter ; 19(48): 9531-9540, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38050434

RESUMEN

We present results from molecular dynamics simulations exploring the supercooled dynamics of the Gaussian Core Model in the low- and intermediate-density regimes. In particular, we analyse the transition from the low-density hard-sphere-like glassy dynamics to the high-density one. The dynamics at low densities is well described by the caging mechanism, giving rise to intermittent dynamics. At high densities, the particles undergo a more continuous motion in which the concept of cage loses its meaning. We elaborate on the idea that these different supercooled dynamics are in fact the precursors of two different glass states.

4.
J R Soc Interface ; 15(145)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30158182

RESUMEN

The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modelling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can also be somewhat alternative to each other, e.g. continuous time random walk and fractional Brownian motion. To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modelling of velocity dynamics. The complexity of the medium is parametrized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particle's dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.


Asunto(s)
Modelos Biológicos , Modelos Químicos , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA