Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 940: 173699, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38830420

RESUMEN

The use of artificial light at night (ALAN) has increased drastically worldwide over the last decades. ALAN can have major effects on nocturnal communities, including insects and bats. Insects are attracted to street lights and few bat species take advantage of this by foraging on the attracted insects. ALAN potentially affects the temporal patterns of insect abundance and thereby bat foraging behaviour. In a natural dark environment, these patterns are usually bimodal, with an activity peak in the early evening and the morning. Little is known about how ALAN affects insect presence throughout the night, and whether the light spectrum plays a role. This is important, as these temporal changes may be a key driver of disturbances in bat-insect interactions. Here, we studied how white and red light affect insects' and bats' nightly activity patterns. The activity of insects and bats (Pipistrellus spp.) was recorded throughout the night at seven experimentally illuminated sites in a forest-edge ecosystem. ALAN disrupted activity patterns, with both insects and bats being more active throughout the night. ALAN facilitated all-night foraging in bats especially near white light, but these effects were attenuated near red light. The ability to forage throughout the night may be a key advantage causing synanthropic bats to dominate in illuminated environments, but this could also prove detrimental in the long term. As red light reduced disturbing effects of ALAN on insects and bats diel activity pattern, it opens the possibility of using spectral composition as a mitigation measure.


Asunto(s)
Quirópteros , Insectos , Iluminación , Conducta Predatoria , Animales , Quirópteros/fisiología , Insectos/fisiología , Luz
2.
J Biol Rhythms ; 39(2): 115-134, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185853

RESUMEN

Surely most chronobiologists believe circadian clocks are an adaptation of organisms that enhances fitness, but are we certain that this focus of our research effort really confers a fitness advantage? What is the evidence, and how do we evaluate it? What are the best criteria? These questions are the topic of this review. In addition, we will discuss selective pressures that might have led to the historical evolution of circadian systems while considering the intriguing question of whether the ongoing climate change is modulating these selective pressures so that the clock is still evolving.


Asunto(s)
Relojes Circadianos , Relojes Circadianos/genética , Ritmo Circadiano
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220364, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37899017

RESUMEN

Our planet endures a progressive increase in artificial light at night (ALAN), which affects virtually all species, and thereby biodiversity. Mitigation strategies include reducing its intensity and duration, and the adjustment of light spectrum using modern light emitting diode (LED) light sources. Here, we studied ground-dwelling invertebrate (predominantly insects, arachnids, molluscs, millipedes, woodlice and worms) diversity and community composition after 3 or 4 years of continued nightly exposure (every night from sunset to sunrise) to experimental ALAN with three different spectra (white-, and green- and red-dominated light), as well as for a dark control, in natural forest-edge habitat. Diversity of pitfall-trapped ground-dwelling invertebrates, and the local contribution to beta diversity, did not differ between the dark control and illuminated sites, or between the different spectra. The invertebrate community composition, however, was significantly affected by the presence of light. Keeping lights off during single nights did show an immediate effect on the composition of trapped invertebrates compared to illuminated nights. These effects of light on species composition may impact ecosystems by cascading effects across the food web. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Asunto(s)
Artrópodos , Ecosistema , Animales , Invertebrados , Biodiversidad , Cadena Alimentaria
4.
Science ; 380(6650): 1125-1130, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319223

RESUMEN

Anthropogenic light is ubiquitous in areas where humans are present and is showing a progressive increase worldwide. This has far-reaching consequences for most species and their ecosystems. The effects of anthropogenic light on natural ecosystems are highly variable and complex. Many species suffer from adverse effects and often respond in a highly specific manner. Ostensibly surveyable effects such as attraction and deterrence become complicated because these can depend on the type of behavior and specific locations. Here, we considered how solutions and new technologies could reduce the adverse effects of anthropogenic light. A simple solution to reducing and mitigating the ecological effects of anthropogenic light seems unattainable, because frugal lighting practices and turning off lights may be necessary to eliminate them.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Contaminación Lumínica , Iluminación , Animales , Humanos , Iluminación/efectos adversos , Contaminación Lumínica/efectos adversos , Aves , Insectos , Quirópteros
5.
Proc Biol Sci ; 290(1999): 20222605, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37192668

RESUMEN

Urbanization dramatically increases the amount of light at night, which may disrupt avian circadian organization. We measured activity patterns of great tits breeding in the city and forest, and subsequently measured two clock properties of these birds under controlled conditions: tau (endogenous circadian clock speed) and after-effects (history dependency of the clock relative to previous conditions). City and forest birds showed a high repeatability of activity onset (0.60 and 0.41, respectively), with no difference between habitats after controlling for date effects. Activity duration and offset showed more variance, without a difference between birds from the two habitats. Tau did not differ between city and forest birds, however, city birds showed stronger after-effects, taking more days to revert to their endogenous circadian period. Finally, onset of activity was correlated with clocks speed in both habitats. Our results suggest that potential differences in activity timing of city birds is not caused by different clock speeds, but by a direct response to light. Persistence in after-effects suggests a reduced sensitivity of the clock to light at night. Urbanization may select for clock properties that increase the inertia of the endogenous circadian system to improve accuracy of activity rhythms when exposed to noisier lighting cues.


Asunto(s)
Relojes Circadianos , Passeriformes , Animales , Ritmo Circadiano/fisiología , Relojes Circadianos/fisiología , Ciudades , Passeriformes/fisiología , Urbanización
6.
Mov Ecol ; 11(1): 25, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101233

RESUMEN

BACKGROUND: Habitat structure strongly influences niche differentiation, facilitates predator avoidance, and drives species-specific foraging strategies of bats. Vegetation structure is also a strong driver of echolocation call characteristics. The fine-scale assessment of how bats utilise such structures in their natural habitat is instrumental in understanding how habitat composition shapes flight- and acoustic behaviour. However, it is notoriously difficult to study their species-habitat relationship in situ. METHODS: Here, we describe a methodology combining Light Detection and Ranging (LiDAR) to characterise three-dimensional vegetation structure and acoustic tracking to map bat behaviour. This makes it possible to study fine-scale use of habitat by bats, which is essential to understand spatial niche segregation in bats. Bats were acoustically tracked with microphone arrays and bat calls were classified to bat guild using automated identification. We did this in multiple LiDAR scanned vegetation plots in forest edge habitat. The datasets were spatially aligned to calculate the distance between bats' positions and vegetation structures. RESULTS: Our results are a proof of concept of combining LiDAR with acoustic tracking. Although it entails challenges with combining mass-volumes of fine-scale bat movements and vegetation information, we show the feasibility and potential of combining those two methods through two case studies. The first one shows stereotyped flight patterns of pipistrelles around tree trunks, while the second one presents the distance that bats keep to the vegetation in the presence of artificial light. CONCLUSION: By combining bat guild specific spatial behaviour with precise information on vegetation structure, the bat guild specific response to habitat characteristics can be studied in great detail. This opens up the possibility to address yet unanswered questions on bat behaviour, such as niche segregation or response to abiotic factors in interaction with natural vegetation. This combination of techniques can also pave the way for other applications linking movement patterns of other vocalizing animals and 3D space reconstruction.

7.
Mov Ecol ; 9(1): 3, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482918

RESUMEN

BACKGROUND: Artificial light at night is recognized as an increasing threat to biodiversity. However, information on the way highly mobile taxa such as bats spatially respond to light is limited. Following the hypothesis of a behavioural adaptation to the perceived risks of predation, we hypothesised that bats should avoid lit areas by shifting their flight route to less exposed conditions. METHODS: Using 3D acoustic localization at four experimentally illuminated sites, we studied how the distance to streetlights emitting white and red light affected the Probability of bats Flying Inside the Forest (PFIF) versus along the forest edge. RESULTS: We show that open-, edge-, and narrow-space foraging bats strongly change flight patterns by increasing PFIF when getting closer to white and red streetlights placed in the forest edge. These behavioural changes occurred mainly on the streetlight side where light was directed. CONCLUSIONS: The results show that bats cope with light exposure by actively seeking refuge in cluttered environment, potentially due to involved predation risks. This is a clear indication that bats make use of landscape structures when reacting to light, and shows the potential of vegetation and streetlight orientation in mitigating effects of light. The study nevertheless calls for preserving darkness as the most efficient way.

8.
Sci Rep ; 10(1): 18389, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110135

RESUMEN

Rapid human population growth and associated urbanization lead to increased artificial illumination of the environment. By changing the natural light-dark cycle, artificial lighting can affect the functioning of natural ecosystems. Many plants rely on insects in order to reproduce but these insects are known to be disturbed by artificial light. Therefore, plant-insect interactions may be affected when exposed to artificial illumination. These effects can potentially be reduced by using different light spectra than white light. We studied the effect of artificial lighting on plant-insect interactions in the Silene latifolia-Hadena bicruris system using a field set-up with four different light treatments: red, green, white and a dark control. We compared the proportion of fertilized flowers and fertilized ovules as well as the infestation of fruits by Hadena bicruris, a pollinating seed predator. We found no difference in the proportion of fertilized flowers among the treatments. The proportion of fruits infested by H. bicruris was however significantly higher under green and white light and a significantly lower proportion of fertilized ovules was found under green light. We show that artificial light with different colours impacts plant-insect interactions differently, with direct consequences for plant fitness.


Asunto(s)
Color , Oscuridad , Frutas/parasitología , Iluminación , Mariposas Nocturnas/fisiología , Polinización , Animales , Interacciones Huésped-Parásitos
9.
Curr Biol ; 30(12): R694-R695, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32574627

RESUMEN

Van Grunsven et al. experimentally test the long-term effects of artificial light on natural moth populations. In the initial two years there was no effect on populations, but in the latter three years population sizes were reduced compared with the dark controls. This shows that artificial light negatively affects moth populations.


Asunto(s)
Luz/efectos adversos , Iluminación/efectos adversos , Mariposas Nocturnas/efectos de la radiación , Animales , Color , Conservación de los Recursos Naturales , Mariposas Nocturnas/fisiología , Países Bajos , Dinámica Poblacional
10.
Ecol Appl ; 30(3): e02062, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31863538

RESUMEN

The ecological impact of artificial light at night (ALAN) on phenological events such as reproductive timing is increasingly recognized. In birds, previous experiments under controlled conditions showed that ALAN strongly advances gonadal growth, but effects on egg-laying date are less clear. In particular, effects of ALAN on timing of egg laying are found to be year-dependent, suggesting an interaction with climatic conditions such as spring temperature, which is known have strong effects on the phenology of avian breeding. Thus, we hypothesized that ALAN and temperature interact to regulate timing of reproduction in wild birds. Field studies have suggested that sources of ALAN rich in short wavelengths can lead to stronger advances in egg-laying date. We therefore tested this hypothesis in the Great Tit (Parus major), using a replicated experimental set-up where eight previously unlit forest transects were illuminated with either white, green, or red LED light, or left dark as controls. We measured timing of egg laying for 619 breeding events spread over six consecutive years and obtained temperature data for all sites and years. We detected overall significantly earlier egg-laying dates in the white and green light vs. the dark treatment, and similar trends for red light. However, there was a strong interannual variability in mean egg-laying dates in all treatments, which was explained by spring temperature. We did not detect any fitness consequence of the changed timing of egg laying due to ALAN, which suggests that advancing reproduction in response to ALAN might be adaptive.


Asunto(s)
Passeriformes , Reproducción , Animales , Oviposición , Estaciones del Año , Temperatura
11.
Proc Biol Sci ; 286(1905): 20190872, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31213184

RESUMEN

Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of darkness, and green was preferred over white light. In a subsequent experiment, we investigated the consequence of sleeping under a particular light condition, and measured birds' daily activity levels, daily energy expenditure (DEE), oxalic acid as a biomarker for sleep debt and cognitive abilities. White light affected activity patterns more than green light. Moreover, there was an origin-dependent response to spectral composition: in urban birds, the total daily activity and night activity did not differ between white and green light, while forest birds were more active under white than green light. We also found that individuals who slept under white and green light had higher DEE. However, there were no differences in oxalic acid levels or cognitive abilities between light treatments. Thus, we argue that in naive birds that had never encountered light at night, white light might disrupt circadian rhythms more than green light. However, it is possible that the negative effects of ALAN on sleep and cognition might be observed only under intensities higher than 1.5 lux. These results suggest that reducing the intensity of light pollution as well as tuning the spectrum towards long wavelengths may considerably reduce its impact.


Asunto(s)
Iluminación , Passeriformes/fisiología , Sueño/fisiología , Animales , Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Metabolismo Energético , Contaminación Ambiental , Femenino , Bosques , Masculino , Urbanización
12.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 441-448, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29952126

RESUMEN

Light pollution is increasing worldwide and significantly affects animal behavior. In birds, these effects include advancement of morning activity and onset of dawn song, which may affect extra-pair paternity. Advanced dawn song of males may stimulate females to engage in extra-pair copulations, and the earlier activity onset may affect the males' mate guarding behavior. Earlier work showed an effect of light at night on extra-pair behavior, but this was in an area with other anthropogenic disturbances. Here, we present a two-year experimental study on effects of light at night on extra-pair paternity of great tits (Parus major). Previously dark natural areas were illuminated with white, red, and green LED lamps and compared to a dark control. In 2014, the proportion of extra-pair young in broods increased with distance to the red and white lamps (i.e., at lower light intensities), but decreased with distance to the poles in the dark control. In 2013, we found no effects on the proportion of extra-pair young. The total number of offspring sired by a male was unaffected by artificial light at night in both years, suggesting that potential changes in female fidelity in pairs breeding close to white and red light did not translate into fitness benefits for the males of these pairs. Artificial light at night might disrupt the natural patterns of extra-pair paternity, possibly negates potential benefits of extra-pair copulations and thus could alter sexual selection processes in wild birds.


Asunto(s)
Color , Iluminación/efectos adversos , Passeriformes/fisiología , Conducta Sexual Animal/efectos de la radiación , Animales , Exposición a Riesgos Ambientales , Femenino , Luz/efectos adversos , Masculino
13.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 506-510, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29808964

RESUMEN

Progressive illumination at night poses an increasing threat to species worldwide. Light at night is particularly problematic for bats as most species are nocturnal and often cross relatively large distances when commuting between roosts and foraging grounds. Earlier studies have shown that illumination of linear structures in the landscape disturbs commuting bats, and that the response of bats to light may strongly depend on the light spectrum. Here, we studied the impact of white, green, and red light on commuting Daubenton's bats (Myotis daubentonii). We used a unique location where commuting bats cross a road by flying through two identical, parallel culverts underneath. We illuminated the culverts with white, red, and green light, with an intensity of 5 lux at the water surface. Bats had to choose between the two culverts, each with a different lighting condition every night. We presented all paired combinations of white, green, and red light and dark control in a factorial design. Contrary to our expectations, the number of bat passes through a culvert was unaffected by the presence of light. Furthermore, bats did not show any preference for light color. These results show that the response of commuting Daubenton's bats to different colors of light at night with a realistic intensity may be limited when passing through culverts.


Asunto(s)
Quirópteros/fisiología , Color , Vuelo Animal/efectos de la radiación , Iluminación/efectos adversos , Animales , Conducta de Elección/efectos de la radiación , Exposición a Riesgos Ambientales , Luz/efectos adversos , Países Bajos
14.
Proc Biol Sci ; 285(1875)2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29593108

RESUMEN

Artificial light at night has shown a dramatic increase over the last decades and continues to increase. Light at night can have strong effects on the behaviour and physiology of species, which includes changes in the daily timing of activity; a clear example is the advance in dawn song onset in songbirds by low levels of light at night. Although such effects are often referred to as changes in circadian timing, i.e. changes to the internal clock, two alternative mechanisms are possible. First, light at night can change the timing of clock controlled activity, without any change to the clock itself; e.g. by a change in the phase relation between the circadian clock and expression of activity. Second, changes in daily activity can be a direct response to light ('masking'), without any involvement of the circadian system. Here, we studied whether the advance in onset of activity by dim light at night in great tits (Parus major) is indeed attributable to a phase shift of the internal clock. We entrained birds to a normal light/dark (LD) cycle with bright light during daytime and darkness at night, and to a comparable (LDim) schedule with dim light at night. The dim light at night strongly advanced the onset of activity of the birds. After at least six days in LD or LDim, we kept birds in constant darkness (DD) by leaving off all lights so birds would revert to their endogenous, circadian system controlled timing of activity. We found that the timing of onset in DD was not dependent on whether the birds were kept at LD or LDim before the measurement. Thus, the advance of activity under light at night is caused by a direct effect of light rather than a phase shift of the internal clock. This demonstrates that birds are capable of changing their daily activity to low levels of light at night directly, without the need to alter their internal clock.


Asunto(s)
Ciclos de Actividad/fisiología , Relojes Circadianos/fisiología , Iluminación/efectos adversos , Pájaros Cantores/fisiología , Animales , Conducta Animal , Ritmo Circadiano/fisiología , Oscuridad , Luz , Modelos Lineales , Masculino , Fotoperiodo
15.
Philos Trans R Soc Lond B Biol Sci ; 372(1734)2017 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-28993491

RESUMEN

Chronobiological research has seen a continuous development of novel approaches and techniques to measure rhythmicity at different levels of biological organization from locomotor activity (e.g. migratory restlessness) to physiology (e.g. temperature and hormone rhythms, and relatively recently also in genes, proteins and metabolites). However, the methodological advancements in this field have been mostly and sometimes exclusively used only in indoor laboratory settings. In parallel, there has been an unprecedented and rapid improvement in our ability to track animals and their behaviour in the wild. However, while the spatial analysis of tracking data is widespread, its temporal aspect is largely unexplored. Here, we review the tools that are available or have potential to record rhythms in the wild animals with emphasis on currently overlooked approaches and monitoring systems. We then demonstrate, in three question-driven case studies, how the integration of traditional and newer approaches can help answer novel chronobiological questions in free-living animals. Finally, we highlight unresolved issues in field chronobiology that may benefit from technological development in the future. As most of the studies in the field are descriptive, the future challenge lies in applying the diverse technologies to experimental set-ups in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.


Asunto(s)
Aves/fisiología , Disciplina de Cronobiología/métodos , Ritmo Circadiano , Insectos/fisiología , Animales , Conducta Animal , Aptitud Genética , Movimiento , Comportamiento de Nidificación
17.
J Biol Rhythms ; 32(4): 323-333, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28745147

RESUMEN

Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits ( Cyanistes caeruleus) exposed to similar intensities of green, red, or white light at night. Birds advanced their onset of activity in the morning under all light colors but more under red and white light than under green light. Offset of activity was slightly delayed in all light colors. The total activity over a 24-h period did not change but birds moved a part of their daily activity into the night. Since the effect of red and white lights are comparable, we tested the influence of light intensity in a follow-up experiment, where we compared the activity of the birds under different intensities of green and white light only. While in the higher range of intensities, the effects of white and green light were comparable; at lower intensities, green light had a less disturbing effect as compared with white light on daily rhythms in blue tits. Our results show that the extent of this disturbance can be mitigated by modulating the spectral characteristics and intensity of outdoor lighting, which is now feasible through the use of LED lighting.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Luz , Actividad Motora/efectos de la radiación , Animales , Color , Estimulación Luminosa , Pájaros Cantores
18.
Proc Biol Sci ; 284(1855)2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28566484

RESUMEN

Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed.


Asunto(s)
Conducta Animal/efectos de la radiación , Quirópteros/fisiología , Luz , Animales , Iluminación
19.
Glob Chang Biol ; 23(11): 4987-4994, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28597541

RESUMEN

The natural nighttime environment is increasingly polluted by artificial light. Several studies have linked artificial light at night to negative impacts on human health. In free-living animals, light pollution is associated with changes in circadian, reproductive, and social behavior, but whether these animals also suffer from physiologic costs remains unknown. To fill this gap, we made use of a unique network of field sites which are either completely unlit (control), or are artificially illuminated with white, green, or red light. We monitored nighttime activity of adult great tits, Parus major, and related this activity to within-individual changes in physiologic indices. Because altered nighttime activity as a result of light pollution may affect health and well-being, we measured oxalic acid concentrations as a biomarker for sleep restriction, acute phase protein concentrations and malaria infection as indices of immune function, and telomere lengths as an overall measure of metabolic costs. Compared to other treatments, individuals roosting in the white light were much more active at night. In these individuals, oxalic acid decreased over the course of the study. We also found that individuals roosting in the white light treatment had a higher probability of malaria infection. Our results indicate that white light at night increases nighttime activity levels and sleep debt and affects disease dynamics in a free-living songbird. Our study offers the first evidence of detrimental effects of light pollution on the health of free-ranging wild animals.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Contaminación Ambiental , Luz/efectos adversos , Sueño/efectos de la radiación , Pájaros Cantores/fisiología , Animales , Metabolismo Energético/efectos de la radiación , Femenino , Inmunidad Innata/efectos de la radiación , Masculino , Actividad Motora/efectos de la radiación
20.
R Soc Open Sci ; 4(1): 160638, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28280562

RESUMEN

Light pollution is increasing exponentially, but its impact on animal behaviour is still poorly understood. For songbirds, the most repeatable finding is that artificial night lighting leads to an earlier daily onset of dawn singing. Most of these studies are, however, correlational and cannot entirely dissociate effects of light pollution from other effects of urbanization. In addition, there are no studies in which the effects of different light colours on singing have been tested. Here, we investigated whether the timing of dawn singing in wild songbirds is influenced by artificial light using an experimental set-up with conventional street lights. We illuminated eight previously dark forest edges with white, green, red or no light, and recorded daily onset of dawn singing during the breeding season. Based on earlier work, we predicted that onset of singing would be earlier in the lighted treatments, with the strongest effects in the early-singing species. However, we found no significant effect of the experimental night lighting (of any colour) in the 14 species for which we obtained sufficient data. Confounding effects of urbanization in previous studies may explain these results, but we also suggest that the experimental night lighting may not have been strong enough to have an effect on singing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA