Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuropathol Exp Neurol ; 69(8): 817-27, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20613636

RESUMEN

Huntington disease (HD) is a fatal neurodegenerative disease with no effective treatment. In the R6/1 mouse model of HD, environmental enrichment delays the neurologic phenotype onset and prevents cerebral volume loss by unknown molecular mechanisms. We examined the effects of environmental enrichment on well-characterized neuropathological parameters in a mouse model of HD. We found a trend toward preservation of downregulated neurotransmitter receptors in striatum of environmentally enriched mice and assessed possible enrichment-related modifications in gene expression using microarrays. We observed similar gene expression changes in R6/1 and R6/2 transgenic mice but found no specific changes in enrichment-related microarray expression profiles in either transgenic or wild-type mice. Furthermore, specific corrections in transprotein-induced transcriptional dysregulation in R6/1 mice were not detected by microarray profiling. However, gene-specific analyses suggested that long-term environmental enrichment may beneficially modulate gene expression dysregulation. Finally, environmental enrichment significantly decreased neuronal intranuclear inclusion load, despite unaffected transgene expression levels. Thus, the therapeutic effects of environmental enrichment likely contribute to decreasing aggregated polyglutamine protein levels without exerting strong effects on gene expression.


Asunto(s)
Ambiente , Regulación de la Expresión Génica/fisiología , Enfermedad de Huntington/patología , Cuerpos de Inclusión Intranucleares/metabolismo , Neuronas/patología , ARN Mensajero/metabolismo , Factores de Edad , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Enfermedad de Huntington/terapia , Cuerpos de Inclusión Intranucleares/ultraestructura , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Ensayo de Unión Radioligante/métodos , Receptores de Neurotransmisores/metabolismo , Expansión de Repetición de Trinucleótido/genética
2.
BMC Neurosci ; 9: 34, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18380890

RESUMEN

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disorder predominantly affecting the cerebral cortex and striatum. Transgenic mice (R6/1 line), expressing a CAG repeat encoding an expanded polyglutamine tract in the N-terminus of the huntingtin protein, closely model HD. We have previously shown that environmental enrichment of these HD mice delays the onset of motor deficits. Furthermore, wheel running initiated in adulthood ameliorates the rear-paw clasping motor sign, but not an accelerating rotarod deficit. RESULTS: We have now examined the effects of enhanced physical activity via wheel running, commenced at a juvenile age (4 weeks), with respect to the onset of various behavioral deficits and their neuropathological correlates in R6/1 HD mice. HD mice housed post-weaning with running wheels only, to enhance voluntary physical exercise, have delayed onset of a motor co-ordination deficit on the static horizontal rod, as well as rear-paw clasping, although the accelerating rotarod deficit remains unaffected. Both wheel running and environmental enrichment rescued HD-induced abnormal habituation of locomotor activity and exploratory behavior in the open field. We have found that neither environment enrichment nor wheel running ameliorates the shrinkage of the striatum and anterior cingulate cortex (ACC) in HD mice, nor the overall decrease in brain weight, measured at 9 months of age. At this age, the density of ubiquitinated protein aggregates in the striatum and ACC is also not significantly ameliorated by environmental enrichment or wheel running. CONCLUSION: These results indicate that enhanced voluntary physical activity, commenced at an early presymptomatic stage, contributes to the positive effects of environmental enrichment. However, sensory and cognitive stimulation, as well as motor stimulation not associated with running, may constitute major components of the therapeutic benefits associated with enrichment. Comparison of different environmental manipulations, performed in specific time windows, can identify critical periods for the induction of neuroprotective 'brain reserve' in animal models of HD and related neurodegenerative diseases.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Terapia por Ejercicio/métodos , Enfermedad de Huntington/terapia , Cuerpos de Inclusión/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Atrofia/fisiopatología , Atrofia/prevención & control , Atrofia/terapia , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Planificación Ambiental , Conducta Exploratoria , Femenino , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/genética , Condicionamiento Físico Animal
3.
J Neurochem ; 100(4): 874-82, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17217424

RESUMEN

Neurodegenerative diseases such as Huntington's disease and Alzheimer's disease, although very different in etiology, share common degenerative processes. These include neuronal dysfunction, decreased neural connectivity, and disruption of cellular plasticity. Understanding the molecular mechanisms underlying the neural plasticity deficits in these devastating conditions may lead the way toward new therapeutic targets, both disease-specific and more generalized, which can ameliorate degenerative cognitive deficits. Furthermore, investigations of 'pathological plasticity' in these diseases lend insight into normal brain function. This review will present evidence for altered plasticity in Huntington's and Alzheimer's diseases, relate these findings to symptomatology, and review possible causes and commonalities.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Huntington , Plasticidad Neuronal/fisiología , Animales , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología
4.
Nat Cell Biol ; 9(2): 139-48, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17187063

RESUMEN

Hyperphosphorylated forms of the microtubule-associated protein (MAP) tau accumulate in Alzheimer's disease and related tauopathies and are thought to have an important role in neurodegeneration. However, the mechanisms through which phosphorylated tau induces neurodegeneration have remained elusive. Here, we show that tau-induced neurodegeneration is associated with accumulation of filamentous actin (F-actin) and the formation of actin-rich rods in Drosophila and mouse models of tauopathy. Importantly, modulating F-actin levels genetically leads to dramatic modification of tau-induced neurodegeneration. The ability of tau to interact with F-actin in vivo and in vitro provides a molecular mechanism for the observed phenotypes. Finally, we show that the Alzheimer's disease-linked human beta-amyloid protein (Abeta) synergistically enhances the ability of wild-type tau to promote alterations in the actin cytoskeleton and neurodegeneration. These findings raise the possibility that a direct interaction between tau and actin may be a critical mediator of tau-induced neurotoxicity in Alzheimer's disease and related disorders.


Asunto(s)
Actinas/metabolismo , Enfermedad de Alzheimer/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Actinas/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Animales , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Drosophila , Humanos , Inmunohistoquímica , Ratones , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fenotipo , Proteínas tau/farmacología
6.
Am J Pathol ; 168(5): 1598-607, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16651626

RESUMEN

Neurofibrillary tangles form in a specific spatial and temporal pattern in Alzheimer's disease. Although tangle formation correlates with dementia and neuronal loss, it remains unknown whether neurofibrillary pathology causes cell death. Recently, a mouse model of tauopathy was developed that reversibly expresses human tau with the dementia-associated P301L mutation. This model (rTg4510) exhibits progressive behavioral deficits that are ameliorated with transgene suppression. Using quantitative analysis of PHF1 immunostaining and neuronal counts, we estimated neuron number and accumulation of neurofibrillary pathology in five brain regions. Accumulation of PHF1-positive tau in neurons appeared between 2.5 and 7 months of age in a region-specific manner and increased with age. Neuron loss was dramatic and region-specific in these mice, reaching over 80% loss in hippocampal area CA1 and dentate gyrus by 8.5 months. We observed regional dissociation of neuronal loss and accumulation of neurofibrillary pathology, because there was loss of neurons before neurofibrillary lesions appeared in the dentate gyrus and, conversely, neurofibrillary pathology appeared without major cell loss in the striatum. Finally, suppressing the transgene prevented further neuronal loss without removing or preventing additional accumulation of neurofibrillary pathology. Together, these results imply that neurofibrillary tangles do not necessarily lead to neuronal death.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Ovillos Neurofibrilares/patología , Neurofibrillas/patología , Neuronas/patología , Tauopatías/patología , Animales , Biomarcadores/análisis , Encéfalo/patología , Proteínas de Unión al ADN , Silenciador del Gen , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/metabolismo , Proteínas Nucleares , Proteínas del Grupo Polycomb , Tauopatías/metabolismo , Factores de Tiempo , Factores de Transcripción , Región del Complejo T del Genoma
7.
J Neurosci ; 25(31): 7278-87, 2005 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-16079410

RESUMEN

Accumulation of amyloid-beta (Abeta) into senile plaques in Alzheimer's disease (AD) is a hallmark neuropathological feature of the disorder, which likely contributes to alterations in neuronal structure and function. Recent work has revealed changes in neurite architecture associated with plaques and functional changes in cortical signaling in amyloid precursor protein (APP) expressing mouse models of AD. Here we developed a method using gene transfer techniques to introduce green fluorescent protein (GFP) into neurons, allowing the investigation of neuronal processes in the vicinity of plaques. Multiphoton imaging of GFP-labeled neurons in living Tg2576 APP mice revealed disrupted neurite trajectories and reductions in dendritic spine density compared with age-matched control mice. A profound deficit in spine density (approximately 50%) extends approximately 20 mum from plaque edges. Importantly, a robust decrement (approximately 25%) also occurs on dendrites not associated with plaques, suggesting widespread loss of postsynaptic apparatus. Plaques and dendrites remained stable over the course of weeks of imaging. Postmortem analysis of axonal immunostaining and colocalization of synaptophysin and postsynaptic density 95 protein staining around plaques indicate a parallel loss of presynaptic and postsynaptic partners. These results show considerable changes in dendrites and dendritic spines in APP transgenic mice, demonstrating a dramatic synaptotoxic effect of dense-cored plaques. Decreased spine density will likely contribute to altered neural system function and behavioral impairments observed in Tg2576 mice.


Asunto(s)
Precursor de Proteína beta-Amiloide/farmacología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Técnicas de Transferencia de Gen , Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide/genética , Animales , Dendritas/ultraestructura , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes , Sustancias Luminiscentes , Ratones , Ratones Transgénicos , Microscopía , Mutación , Vías Nerviosas/patología , Neuritas , Neuronas/ultraestructura , Fotones , Placa Amiloide/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacología , Sinaptofisina/metabolismo
8.
FEBS J ; 272(10): 2347-61, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15885086

RESUMEN

Neurodegenerative disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases, affect millions of people worldwide and currently there are few effective treatments and no cures for these diseases. Transgenic mice expressing human transgenes for huntingtin, amyloid precursor protein, and other genes associated with familial forms of neurodegenerative disease in humans provide remarkable tools for studying neurodegeneration because they mimic many of the pathological and behavioural features of the human conditions. One of the recurring themes revealed by these various transgenic models is that different diseases may share similar molecular and cellular mechanisms of pathogenesis. Cellular mechanisms known to be disrupted at early stages in multiple neurodegenerative disorders include gene expression, protein interactions (manifesting as pathological protein aggregation and disrupted signaling), synaptic function and plasticity. Recent work in mouse models of Huntington's disease has shown that enriching the environment of transgenic animals delays the onset and slows the progression of Huntington's disease-associated motor and cognitive symptoms. Environmental enrichment is known to induce various molecular and cellular changes in specific brain regions of wild-type animals, including altered gene expression profiles, enhanced neurogenesis and synaptic plasticity. The promising effects of environmental stimulation, demonstrated recently in models of neurodegenerative disease, suggest that therapy based on the principles of environmental enrichment might benefit disease sufferers and provide insight into possible mechanisms of neurodegeneration and subsequent identification of novel therapeutic targets. Here, we review the studies of environmental enrichment relevant to some major neurodegenerative diseases and discuss their research and clinical implications.


Asunto(s)
Ambiente , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Animales , Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Epigénesis Genética , Humanos , Ratones , Ratones Transgénicos , Fenotipo , Sinapsis/fisiología , Transcripción Genética
9.
Cereb Cortex ; 15(4): 385-93, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15749982

RESUMEN

The phospholipase C-beta1 (PLC-beta1) signalling pathway, activated via metabotropic glutamate receptors (mGluRs), is implicated in activity-dependent development of the cerebral cortex, as both PLC-beta1 and mGluR5 knockout mice exhibit disrupted barrel formation in somatosensory cortex. To characterize the effects of this signalling system on development of synaptic circuitry in barrel cortex, we have examined neuronal ultrastructure, synapse formation and dendritic spine morphology in PLC-beta1 knockout mice. Qualitative ultrastructure of neurons and synapse density in layers 2-4 of barrel cortex were unchanged in PLC-beta1 knockout mice during development [postnatal day (P) 5] and in mature cortex (P19-21). We found a decrease in the proportion of synapses with symmetric morphology at P5 that was gone by P19-21, indicating a transient imbalance in excitatory and inhibitory circuitry. We also investigated dendritic spines by back-labelling layer 5 pyramidal neurons with carbocyanine. We observed normal dendritic spine densities on apical dendrites as they passed through layer 4 of barrel cortex, but spine morphology was altered in PLC-beta1 knockout mice at P9. These observations indicate that the PLC-beta1 signalling pathway plays a role in the development of normal cortical circuitry. Interrupting this regulation leads to changes in synapse and dendritic spine morphology, possibly altering post-synaptic integration of signal.


Asunto(s)
Dendritas/fisiología , Isoenzimas/fisiología , Corteza Motora/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Fosfolipasas de Tipo C/fisiología , Algoritmos , Animales , Peso Corporal/fisiología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Recuento de Células , Dendritas/ultraestructura , Genotipo , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica , Corteza Motora/crecimiento & desarrollo , Tamaño de los Órganos , Fosfolipasa C beta , Sinapsis/ultraestructura
10.
NeuroRx ; 2(3): 423-37, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16389306

RESUMEN

As the scope of the problem of Alzheimer's disease (AD) grows due to an aging population, research into the devastating condition has taken on added urgency. Rare inherited forms of AD provide insight into the molecular pathways leading to degeneration and have made possible the development of transgenic animal models. Several of these models are based on the overexpression of amyloid precursor protein (APP), presenilins, or tau to cause production and accumulation of amyloid-beta into plaques or hyperphosphorylated tau into neurofibrillary tangles. Producing these characteristic neuropathological lesions in animals causes progressive neurodegeneration and in some cases similar behavioral disruptions to those seen in AD patients. Knockout models of proteins involved in AD have also been generated to explore the native functions of these genes and examine whether pathogenesis is due to loss of function or toxic gain of function in these systems. Although none of the transgenic lines models the human condition exactly, the ability to study similar pathological processes in living animals have provided numerous insights into disease mechanisms and opportunities to test therapeutic agents. This chapter reviews animal models of AD and their contributions to developing therapeutic approaches for AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales Modificados Genéticamente/fisiología , Enfermedad de Alzheimer/psicología , Amiloide/genética , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratas , Proteínas tau/genética
11.
Rev Neurosci ; 15(4): 267-78, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15526551

RESUMEN

During the course of Alzheimer's disease (AD), neurons undergo extensive remodeling, contributing to the loss of function observed in the disease. Many brain regions in patients with AD show changes in axonal and dendritic fields, dystrophic neurites, synapse loss, and neuron loss. Accumulation of amyloid-beta protein, a pathological hallmark of the disease, contributes to many of these alterations of neuronal structure. Areas of the brain displaying a high degree of plasticity are particularly vulnerable to degeneration in Alzheimer's disease. This article describes neuronal changes that occur in AD, reviews evidence that amyloid-beta contributes to these changes, and finally discusses the recovery of amyloid-induced changes in the brains of transgenic mice, lending hope to the idea that therapeutic strategies which reduce amyloid-beta production will lead to functional recovery in patients with AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Neuronas/efectos de los fármacos , Placa Amiloide/fisiología , Enfermedad de Alzheimer/terapia , Animales , Animales Modificados Genéticamente , Axones/fisiología , Espinas Dendríticas/fisiología , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/métodos , Neuronas/patología , Sinapsis/patología , Sinapsis/fisiología
12.
Eur J Neurosci ; 19(10): 2799-807, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15147313

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disease caused by a CAG repeat expansion coding for an expanded polyglutamine tract in the huntingtin protein. Dendritic abnormalities occur in human HD patients and in several transgenic mouse models of the disease. In this study, we examine, for the first time, dendrite and spine pathology in the R6/1 mouse model of HD, which mimics neurodegeneration seen in human HD. Enriching the environment of HD transgenic mice delays the onset of symptoms, so we also examine the effects of enrichment on dendrite pathology. Golgi-impregnated tissue from symptomatic R6/1 HD mice reveals a decrease in dendritic spine density and dendritic spine length in striatal medium spiny neurons and cortical pyramidal neurons. HD also causes a specific reduction in the proportion of bifurcated dendritic spines on basal dendrites of cortical pyramidal neurons. No differences in soma size, recurving distal dendrites, or dendritic branching were observed. Although home-cage environmental enrichment from 1 to 8 months of age increases spine density in wild-type mice, it has no effect on the spine pathology in HD mice. These results show that dendritic spine pathology in R6/1 HD mice resembles degenerative changes seen in human HD and in other transgenic mouse models of the disease. We thus provide further evidence that the HD mutation disrupts the connectivity in both neostriatum and cerebral cortex, which will contribute to motor and cognitive disease symptoms. Furthermore, we demonstrate that Huntington's disease pathology interferes with the normal plastic response of dendritic spines to environmental enrichment.


Asunto(s)
Dendritas/patología , Ambiente , Enfermedad de Huntington/patología , Neuronas/patología , Animales , Corteza Cerebral/patología , Cuerpo Estriado/patología , Dendritas/clasificación , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina , Ratones , Ratones Endogámicos , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Tinción con Nitrato de Plata/métodos , Expansión de Repetición de Trinucleótido/genética
13.
J Neurosci ; 24(9): 2270-6, 2004 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-14999077

RESUMEN

Huntington's disease (HD) is a devastating neurodegenerative disorder caused by a CAG repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. Transgenic mice expressing a human huntingtin transgene containing an expanded CAG repeat (R6/1 model) develop a neurodegenerative disorder closely resembling human HD. Previous work demonstrated that environmental enrichment delays the onset of motor symptoms in this mouse model. We confirmed that at 5 months of age, enrichment ameliorates motor symptoms (assessed using the rotarod test) and prevents loss of body weight induced by the HD transgene. We further examined molecular consequences of enrichment by determining changes in protein levels in the neostriatum, hippocampus, and anterior cortex using quantitative Western blot analysis. Non-enriched HD mice have severe reductions in BDNF in the hippocampus and striatum at 5 months, which are entirely rescued by enrichment. BDNF levels are unaltered by HD in the anterior cortex, suggesting that enrichment might prevent HD-induced impairment of anterograde transport of this neurotrophin to the striatum. NGF is unaffected by HD. Non-enriched HD mice also exhibit deficits in dopamine and cAMP-regulated phosphoprotein (32 kDa) in striatum and anterior cortex. Environmental enrichment rescues the cortical but not the striatal deficit at 5 months. These results suggest that environmental enrichment benefits animals at early stages of the disease by rescuing protein deficits, possibly through rescuing transcription or protein transport problems.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ambiente , Enfermedad de Huntington/etiología , Enfermedad de Huntington/fisiopatología , Fosfoproteínas/metabolismo , Factores de Edad , Animales , Peso Corporal , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dopamina/deficiencia , Dopamina/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/patología , Enfermedad de Huntington/terapia , Ratones , Ratones Transgénicos , Trastornos del Movimiento/genética , Trastornos del Movimiento/fisiopatología , Trastornos del Movimiento/terapia , Neostriado/metabolismo , Neostriado/patología , Factor de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Tamaño de los Órganos , Fosfoproteínas/deficiencia , Expansión de Repetición de Trinucleótido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA