Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408436

RESUMEN

The analytical performance of the clay paste electrode and graphene paste electrode was compared using square wave voltammetry (SWV) and cyclic voltammetry (CV). The comparison was made on the basis of a paracetamol (PA) determination on both working electrodes. The influence of pH and SWV parameters was investigated. The linear concentration ranges were found to be 6.0 × 10-7-3.0 × 10-5 and 2.0 × 10-6-8.0 × 10-5 mol L-1 for clay paste electrode (ClPE) and graphene paste electrode (GrPE), respectively. The detection and quantification limits were calculated as 1.4 × 10-7 and 4.7 ×10-7 mol L-1 for ClPE and 3.7 × 10-7 and 1.2 × 10-6 mol L-1 for GrPE, respectively. Developed methods were successfully applied to pharmaceutical formulations analyses. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize ClPE and GrPE surfaces. Clay composition was examined with wavelength dispersive X-ray (WDXRF).


Asunto(s)
Grafito , Acetaminofén/análisis , Carbono/química , Arcilla , Técnicas Electroquímicas/métodos , Electrodos , Grafito/química
2.
Molecules ; 27(6)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35335355

RESUMEN

This paper discusses the electrochemical behavior of antiviral drug Tenofovir (TFV) and its possible applicability towards electroanalytical determination with diverse detection strategies using square-wave voltammetry. Namely, oxidation processes were investigated using glassy carbon electrode with graphene oxide surface modification (GO/GCE), while the reduction processes, related to the studied analyte, were analyzed at a renewable silver amalgam electrode (Hg(Ag)FE). Scanning electron microscopy imaging confirmed the successful deposition of GO at the electrode surface. Catalytic properties of graphene oxide were exposed while being compared with those of bare GCE. The resultant modification of GCE with GO enhanced the electroactive surface area by 50% in comparison to the bare one. At both electrodes, i.e., GO/GCE and Hg(Ag)FE, the TFV response was used to examine and optimize the influence of square-wave excitation parameters, i.e., square wave frequency, step potential and amplitude, and supporting electrolyte composition and its pH. Broad selectivity studies were performed with miscellaneous interfering agents influence, including ascorbic acid, selected saccharides and aminoacids, metal ions, non-opioid analgesic metamizole, non-steroidal anti-inflammatory drug omeprazole, and several drugs used along with TFV treatment. The linear concentration range for TFV determination at GO/GCE and Hg(Ag)FE was found to be 0.3-30.0 µmol L-1 and 0.5-7.0 µmol L-1, respectively. The lowest LOD was calculated for GO/GCE and was equal to 48.6 nmol L-1. The developed procedure was used to detect TFV in pharmaceutical formulations and patient urine samples and has referenced utilization in HPLC studies.


Asunto(s)
Composición de Medicamentos , Catálisis , Electrodos , Humanos , Oxidación-Reducción , Tenofovir
3.
Materials (Basel) ; 13(20)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086525

RESUMEN

This work is focused on photocatalytic properties of titanium dioxide thin coatings modified with silver nanostructures (AgNSs) and graphene oxide (GO) sheets which were analyzed in processes of chemical transformations of rhodamine B (RhB) under ultraviolet (UV) or visible light (Vis) irradiation, respectively. UV-Vis spectroscopy was applied to analyze the changes in the RhB spectrum during photocatalytic processes, revealing decolorization of RhB solution under UV irradiation while the same process coexisting with the transformation of RhB to rhodamine 110 was observed under Vis irradiation. The novelty of this study is the elaboration of a methodology for determining the parameters characterizing the processes occurring under the Vis irradiation, which enables the comparison of photocatalysts' activity. For the first time, the method for quantification of rhodamine B transformation into rhodamine 110 in the presence of a semiconductor under visible light irradiation was proposed. Photocatalysts with various surface architectures were designed. TiO2 thin coatings were obtained by the sol-gel method. GO sheets were deposited on their surface using the dip-coating method. AgNSs were photogenerated on TiO2 or grown spontaneously on GO flakes. For characterization of obtained photocatalysts, scanning electron microscopy (SEM), X-ray diffraction (XRD) and diffuse-reflectance spectroscopy (DRS) techniques were applied. The results indicate that the surface architecture of prepared coatings does not affect the main reaction path but have an influence on the reaction rates and yields of observed processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA