RESUMEN
BACKGROUND: The development of petal-like organs has occurred repetitively throughout angiosperm evolution. Despite homoplasy, it is possible that common underlying molecular mechanisms are repeatedly recruited to drive the development of petaloid organs. In Zingiberales, infertile, petal-like structures replace fertile stamens, resulting in petaloidy in androecial whorls. Assuming that androecial petaloidy is a shared derived characteristic, we expect to find common ultrastructure and molecular mechanisms underlying androecial petaloidy across Zingiberales. RESULTS: We show that petaloidy in Zingiberales is associated with tightly packed, protruding epidermal cells. Expression patterns for candidate genes involved in petal identity differ between the petaloid organs of Costaceae v. Cannaceae, despite similar macro- and microscopic organization. For all candidate gene families analyzed, our data suggest at least one Zingiberales-specific duplication event. CONCLUSIONS: Our data suggest that the patterns of B-class gene expression across the Zingiberales do not correlate with the occurrence of petaloidy, indicating that androecial petaloidy might have evolved independently of B-class gene expression in some lineages. It is possible that gene duplication may play a role in the diversity of petaloid structures found throughout the Zingiberales. It is likely that Zingiberales petaloidy may also result from the deployment of genes other than those involved in specification of petal identity. Developmental Dynamics 244:1121-1132, 2015. © 2015 Wiley Periodicals, Inc.
RESUMEN
The hypothesis of ecological speciation states that as populations diverge in different niches, reproductive isolation evolves as a by-product of adaptation to these different environments. In this context, we used Nolina parviflora as a model to test if this species evolved via ecological speciation and to explore current and historical gene flow among its populations. Nolina parviflora is a montane species endemic to Mexico with its geographical distribution restricted largely to the Trans-Mexican Volcanic Belt. This mountain range is one of the most complex geological regions in Mexico, having undergone volcanism from the mid-Miocene to the present. Ecologically, the Trans-Mexican Volcanic Belt possesses different types of vegetation, including tropical dry forest; oak, pine, pine-oak, and pine-juniper forests; and xerophytic scrub--all of which maintain populations of N. parviflora. Using species distribution models, climatic analyses, spatial connectivity and morphological comparisons, we found significant differences in climatic and morphological variables between populations of N. parviflora in two distinct Trans-Mexican Volcanic Belt regions (east vs. west). This could mean that the geographically isolated populations diverged from one another via niche divergence, indicating ecological speciation. Spatial connectivity analysis revealed no connectivity between these regions under the present or last glacial maximum climate models, indicating a lack of gene flow between the populations of the two regions. The results imply that these populations may encompass more than a single species.
Asunto(s)
Fenómenos Ecológicos y Ambientales , Liliaceae/clasificación , Filogeografía , Erupciones Volcánicas , Clima , Variación Genética , Liliaceae/genética , México , Modelos TeóricosRESUMEN
The Milla clade currently comprises six genera of geophytic plants distributed from Arizona to Guatemala. Three genera (Behria, Jaimehintonia and Petronymphe) are monotypic while the remaining genera (Bessera, Dandya and Milla) contain from two to ten (Milla) species. Parsimony, Maximum Likelihood and Bayesian Inference analyses were conducted with plastid and nuclear DNA sequences from a total of 181 plants belonging to 15 species in all six genera. Molecular dating was performed under a relaxed clock model. We examined the phylogenetic relationships of the genera and species, estimated origin-divergence times for the clade and genera and determined the ancestral distribution area of the clade by optimizing ancestral areas given current biogeographic distributions. The phylogenetic results suggest that final decisions on limits of the six genera in the Milla clade will have to be established until further taxonomic work is completed for Milla, in particular for the group of populations included under the name M. biflora. The later genus is rendered polyphyletic by other genera of the family. The origin of the Milla clade is estimated at 15.8Ma. Ancestral area of the clade most likely was located in the California Floristic Province and dispersal occurred most likely to the Chihuahuan-Coahuila Plateaus and the Trans-Mexican Volcanic Belt and from there to Baja California and the Sierra Madre del Sur. Two hypotheses that need further testing are proposed to explain complex relationships of genera and polyphyly of Milla, one in relation to fragmentation of populations and pollinator shifts and another suggesting that populations remained in refugia in the Trans-Mexican Volcanic Belt.
Asunto(s)
Evolución Biológica , Liliaceae/clasificación , Filogenia , Arizona , Teorema de Bayes , California , ADN de Cloroplastos/genética , ADN de Plantas/genética , Funciones de Verosimilitud , Liliaceae/genética , México , Modelos Genéticos , Análisis de Secuencia de ADNRESUMEN
The majority of achlorophyllous mycoheterotrophic plant species associate with arbuscular mycorrhizal fungi (AMF). Previous studies have shown that some species are highly specialized towards narrow lineages of AMF and have suggested that only particular lineages of these fungi are targeted by mycoheterotrophic plants. To test this hypothesis, we analyzed all available partial SSU sequences of AMF associated with mycoheterotrophic plants including data from 13 additional specimens from French Guiana, Gabon and Australia. Sequences were assigned to 'virtual taxa' (VT) according to the MaarjAM database. We found that 20% of all known Glomeromycota VT are involved in mycoheterotrophic interactions and the majority of associations involve Glomeraceae (Glomus Group A) fungi. While some mycoheterotrophic plant species have been found growing with only a single VT, many species are able to associate with a wide range of AMF. We calculated significant phylogenetic clustering of Glomeromycota VT involved in mycoheterotrophic interactions, suggesting that associations between mycoheterotrophic plants and AMF are influenced by the phylogenetic relationships of the fungi. Our results demonstrate that many lineages of AMF are prone to exploitation by mycoheterotrophic plants. However, mycoheterotrophs from different plant lineages and different geographical regions tend to be dependent on lineages of AMF that are phylogenetically related.