Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 585: 216671, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38290658

RESUMEN

Platinum-based drugs remain the reference treatment for gastric cancer (GC). However, the frequency of resistance, due to mutations in TP53 or alterations in the energy and redox metabolisms, impairs the efficacy of current treatments, highlighting the need for alternative therapeutic options. Here, we show that a cycloruthenated compound targeting the redox metabolism, RDC11, induces higher cytotoxicity than oxaliplatin in GC cells and is more potent in reducing tumor growth in vivo. Detailed investigations into the mode of action of RDC11 indicated that it targets the glutathione (GSH) metabolism, which is an important drug resistance mechanism. We demonstrate that cycloruthenated complexes regulate the expression of enzymes of the transsulfuration pathway via the Unfolded Protein Response (UPR) and its effector ATF4. Furthermore, RDC11 induces the expression of SLC7A11 encoding for the cystine/glutamate antiporter xCT. These effects lead to a lower cellular GSH content and elevated oxygen reactive species production, causing the activation of a caspase-independent apoptosis. Altogether, this study provides the first evidence that cycloruthenated complexes target the GSH metabolism, neutralizing thereby a major resistance mechanism towards platinum-based chemotherapies and anticancer immune response.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Glutatión/metabolismo , Respuesta de Proteína Desplegada , Sistema de Transporte de Aminoácidos y+/genética
2.
Cancers (Basel) ; 11(11)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703394

RESUMEN

Gastric cancer (GC) remains a health issue due to the low efficiency of therapies, such as cisplatin. This unsatisfactory situation highlights the necessity of finding factors impacting GC sensibility to therapies. We analyzed the cisplatin pangenomic response in cancer cells and found HDAC4 as a major epigenetic regulator being inhibited. HDAC4 mRNA repression was partly mediated by the cisplatin-induced expression of miR-140. At a functional level, HDAC4 inhibition favored cisplatin cytotoxicity and reduced tumor growth. Inversely, overexpression of HDAC4 inhibits cisplatin cytotoxicity. Importantly, HDAC4 expression was found to be elevated in gastric tumors compared to healthy tissues, and in particular in specific molecular subgroups. Furthermore, mutations in HDAC4 correlate with good prognosis. Pathway analysis of genes whose expression in patients correlated strongly with HDAC4 highlighted DNA damage, p53 stabilization, and apoptosis as processes downregulated by HDAC4. This was further confirmed by silencing of HDAC4, which favored cisplatin-induced apoptosis characterized by cleavage of caspase 3 and induction of proapoptotic genes, such as BIK, in part via a p53-dependent mechanism. Altogether, these results reveal HDAC4 as a resistance factor for cisplatin in GC cells that impacts on patients' survival.

3.
Oncotarget ; 8(2): 2568-2584, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27935863

RESUMEN

Ruthenium complexes are considered as potential replacements for platinum compounds in oncotherapy. Their clinical development is handicapped by a lack of consensus on their mode of action. In this study, we identify three histones (H3.1, H2A, H2B) as possible targets for an anticancer redox organoruthenium compound (RDC11). Using purified histones, we confirmed an interaction between the ruthenium complex and histones that impacted on histone complex formation. A comparative study of the ruthenium complex versus cisplatin showed differential epigenetic modifications on histone H3 that correlated with differential expression of histone deacetylase (HDAC) genes. We then characterized the impact of these epigenetic modifications on signaling pathways employing a transcriptomic approach. Clustering analyses showed gene expression signatures specific for cisplatin (42%) and for the ruthenium complex (30%). Signaling pathway analyses pointed to specificities distinguishing the ruthenium complex from cisplatin. For instance, cisplatin triggered preferentially p53 and folate biosynthesis while the ruthenium complex induced endoplasmic reticulum stress and trans-sulfuration pathways. To further understand the role of HDACs in these regulations, we used suberanilohydroxamic acid (SAHA) and showed that it synergized with cisplatin cytotoxicity while antagonizing the ruthenium complex activity. This study provides critical information for the characterization of signaling pathways differentiating both compounds, in particular, by the identification of a non-DNA direct target for an organoruthenium complex.


Asunto(s)
Cisplatino/farmacología , Histonas/metabolismo , Neoplasias/genética , Compuestos Organometálicos/farmacología , Rutenio/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Células HCT116 , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Compuestos Organometálicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA