Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Med Phys ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092902

RESUMEN

BACKGROUND: Ultrahigh dose-rate radiation (UHDR) produces less hydrogen peroxide (H2O2) in pure water, as suggested by some experimental studies, and is used as an argument for the validity of the theory that FLASH spares the normal tissue due to less reactive oxygen species (ROS) production. In contrast, most Monte Carlo simulation studies suggest the opposite. PURPOSE: We aim to unveil the effect of UHDR on H2O2 production in pure water and its underlying mechanism, to serve as a benchmark for Monte Carlo simulation. We hypothesized that the reaction of solvated electrons ( e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ ) removing hydroxyl radicals (•OH), the precursor of H2O2, is the reason why UHDR leads to a lower G-value (molecules/100 eV) for H2O2 (G[H2O2]), because: 1, the third-order reaction between e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ and •OH is more sensitive to increased instantaneous ROS concentration by UHDR than a two-order reaction of •OH self-reaction producing H2O2; 2, e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ has two times higher diffusion coefficient and higher reaction rate constant than that of •OH, which means e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ would dominate the competition for •OH and benefit more from the inter-track effect of UHDR. Meanwhile, we also experimentally verify the theory of long-lived radicals causing lower G(H2O2) in conventional irradiation, which is mentioned in some simulation studies. METHODS AND MATERIALS: H2O2 was measured by Amplex UltraRed assay. 430.1 MeV/u carbon ions (50 and 0.1 Gy/s), 9 MeV electrons (600 and 0.62 Gy/s), and 200 kV x-ray tube (10 and 0.1 Gy/s) were employed. For three kinds of water (real hypoxic: 1% O2; hypoxic: 1% O2 and 5% CO2; and normoxic: 21% O2), unbubbled and bubbled samples with N2O, the scavenger of e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ , were irradiated by carbon ions and electrons with conventional and UHDR at different absolute dose levels. Normoxic water dissolved with sodium nitrate (NaNO3), another scavenger of e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ , and bubbled with N2O was irradiated by x-ray to verify the results of low-LET electron beam. RESULTS: UHDR leads to a lower G(H2O2) than conventional irradiation. O2 and CO2 can both increase G(H2O2). N2O increases G(H2O2) of both UHDR and conventional irradiation and eliminates the difference between them for carbon ions. However, N2O decreases G(H2O2) in electron conventional irradiation but increases G(H2O2) in the case of UHDR, ending up with no dose-rate dependency of G(H2O2). Three-spilled carbon UHDR does not have a lower G(H2O2) than one-spilled UHDR. However, the electron beam shows a lower G(H2O2) for three-spilled UHDR than for one-spilled UHDR. Normoxic water with N2O or NaNO3 can both eliminate the dose rate dependency of H2O2 production for x-ray. CONCLUSIONS: UHDR has a lower G(H2O2) than the conventional irradiation for both high LET carbon and low LET electron and x-ray beams. Both scavengers for e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ , N2O and NaNO3, eliminate the dose-rate dependency of G(H2O2), which suggests e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ is the reason for decreased G(H2O2) for UHDR. Three-spilled UHDR versus one-spilled UHDR indicates that the assumption of residual radicals reducing G(H2O2) of conventional irradiation may only be valid for low LET electron beam.

2.
J Thorac Dis ; 16(2): 1009-1020, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38505008

RESUMEN

Background: The global coronavirus disease 2019 (COVID-19) pandemic has posed substantial challenges for healthcare systems, notably the increased demand for chest computed tomography (CT) scans, which lack automated analysis. Our study addresses this by utilizing artificial intelligence-supported automated computer analysis to investigate lung involvement distribution and extent in COVID-19 patients. Additionally, we explore the association between lung involvement and intensive care unit (ICU) admission, while also comparing computer analysis performance with expert radiologists' assessments. Methods: A total of 81 patients from an open-source COVID database with confirmed COVID-19 infection were included in the study. Three patients were excluded. Lung involvement was assessed in 78 patients using CT scans, and the extent of infiltration and collapse was quantified across various lung lobes and regions. The associations between lung involvement and ICU admission were analysed. Additionally, the computer analysis of COVID-19 involvement was compared against a human rating provided by radiological experts. Results: The results showed a higher degree of infiltration and collapse in the lower lobes compared to the upper lobes (P<0.05). No significant difference was detected in the COVID-19-related involvement of the left and right lower lobes. The right middle lobe demonstrated lower involvement compared to the right lower lobes (P<0.05). When examining the regions, significantly more COVID-19 involvement was found when comparing the posterior vs. the anterior halves and the lower vs. the upper half of the lungs. Patients, who required ICU admission during their treatment exhibited significantly higher COVID-19 involvement in their lung parenchyma according to computer analysis, compared to patients who remained in general wards. Patients with more than 40% COVID-19 involvement were almost exclusively treated in intensive care. A high correlation was observed between computer detection of COVID-19 affections and the rating by radiological experts. Conclusions: The findings suggest that the extent of lung involvement, particularly in the lower lobes, dorsal lungs, and lower half of the lungs, may be associated with the need for ICU admission in patients with COVID-19. Computer analysis showed a high correlation with expert rating, highlighting its potential utility in clinical settings for assessing lung involvement. This information may help guide clinical decision-making and resource allocation during ongoing or future pandemics. Further studies with larger sample sizes are warranted to validate these findings.

3.
Micromachines (Basel) ; 14(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37763906

RESUMEN

A minimally-invasive manipulator characterized by hyper-redundant kinematics and embedded sensing modules is presented in this work. The bending angles (tilt and pan) of the robot tip are controlled through tendon-driven actuation; the transmission of the actuation forces to the tip is based on a Bowden-cable solution integrating some channels for optical fibers. The viability of the real-time measurement of the feedback control variables, through optoelectronic acquisition, is evaluated for automated bending of the flexible endoscope and trajectory tracking of the tip angles. Indeed, unlike conventional catheters and cannulae adopted in neurosurgery, the proposed robot can extend the actuation and control of snake-like kinematic chains with embedded sensing solutions, enabling real-time measurement, robust and accurate control of curvature, and tip bending of continuum robots for the manipulation of cannulae and microsurgical instruments in neurosurgical procedures. A prototype of the manipulator with a length of 43 mm and a diameter of 5.5 mm has been realized via 3D printing. Moreover, a multiple regression model has been estimated through a novel experimental setup to predict the tip angles from measured outputs of the optoelectronic modules. The sensing and control performance has also been evaluated during tasks involving tip rotations.

4.
Res Sq ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333197

RESUMEN

Background: The aim of the current study was to investigate the distribution and extent of lung involvement in patients with COVID-19 with AI-supported, automated computer analysis and to assess the relationship between lung involvement and the need for intensive care unit (ICU) admission. A secondary aim was to compare the performance of computer analysis with the judgment of radiological experts. Methods: A total of 81 patients from an open-source COVID database with confirmed COVID-19 infection were included in the study. Three patients were excluded. Lung involvement was assessed in 78 patients using computed tomography (CT) scans, and the extent of infiltration and collapse was quantified across various lung lobes and regions. The associations between lung involvement and ICU admission were analyzed. Additionally, the computer analysis of COVID-19 involvement was compared against a human rating provided by radiological experts. Results: The results showed a higher degree of infiltration and collapse in the lower lobes compared to the upper lobes (p < 0.05) No significant difference was detected in the COVID-19-related involvement of the left and right lower lobes. The right middle lobe demonstrated lower involvement compared to the right lower lobes (p < 0.05). When examining the regions, significantly more COVID-19 involvement was found when comparing the posterior vs. the anterior halves of the lungs and the lower vs. the upper half of the lungs. Patients, who required ICU admission during their treatment exhibited significantly higher COVID-19 involvement in their lung parenchyma according to computer analysis, compared to patients who remained in general wards. Patients with more than 40% COVID-19 involvement were almost exclusively treated in intensive care. A high correlation was observed between computer detection of COVID-19 affections and expert rating by radiological experts. Conclusion: The findings suggest that the extent of lung involvement, particularly in the lower lobes, dorsal lungs, and lower half of the lungs, may be associated with the need for ICU admission in patients with COVID-19. Computer analysis showed a high correlation with expert rating, highlighting its potential utility in clinical settings for assessing lung involvement. This information may help guide clinical decision-making and resource allocation during ongoing or future pandemics. Further studies with larger sample sizes are warranted to validate these findings.

5.
Ann Biomed Eng ; 51(8): 1859-1871, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093401

RESUMEN

Clonogenic assays are routinely used to evaluate the response of cancer cells to external radiation fields, assess their radioresistance and radiosensitivity, estimate the performance of radiotherapy. However, classic clonogenic tests focus on the number of colonies forming on a substrate upon exposure to ionizing radiation, and disregard other important characteristics of cells such their ability to generate structures with a certain shape. The radioresistance and radiosensitivity of cancer cells may depend less on the number of cells in a colony and more on the way cells interact to form complex networks. In this study, we have examined whether the topology of 2D cancer-cell graphs is influenced by ionizing radiation. We subjected different cancer cell lines, i.e. H4 epithelial neuroglioma cells, H460 lung cancer cells, PC3 bone metastasis of grade IV of prostate cancer and T24 urinary bladder cancer cells, cultured on planar surfaces, to increasing photon radiation levels up to 6 Gy. Fluorescence images of samples were then processed to determine the topological parameters of the cell-graphs developing over time. We found that the larger the dose, the less uniform the distribution of cells on the substrate-evidenced by high values of small-world coefficient (cc), high values of clustering coefficient (cc), and small values of characteristic path length (cpl). For all considered cell lines, [Formula: see text] for doses higher or equal to 4 Gy, while the sensitivity to the dose varied for different cell lines: T24 cells seem more distinctly affected by the radiation, followed by the H4, H460 and PC3 cells. Results of the work reinforce the view that the characteristics of cancer cells and their response to radiotherapy can be determined by examining their collective behavior-encoded in a few topological parameters-as an alternative to classical clonogenic assays.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Próstata , Masculino , Humanos , Tolerancia a Radiación/fisiología , Neoplasias de la Próstata/patología , Células Epiteliales , Supervivencia Celular
6.
Int J Comput Assist Radiol Surg ; 18(10): 1849-1856, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37083973

RESUMEN

PURPOSE: Primary central nervous system lymphoma (PCNSL) is a rare, aggressive form of extranodal non-Hodgkin lymphoma. To predict the overall survival (OS) in advance is of utmost importance as it has the potential to aid clinical decision-making. Though radiomics-based machine learning (ML) has demonstrated the promising performance in PCNSL, it demands large amounts of manual feature extraction efforts from magnetic resonance images beforehand. deep learning (DL) overcomes this limitation. METHODS: In this paper, we tailored the 3D ResNet to predict the OS of patients with PCNSL. To overcome the limitation of data sparsity, we introduced data augmentation and transfer learning, and we evaluated the results using r stratified k-fold cross-validation. To explain the results of our model, gradient-weighted class activation mapping was applied. RESULTS: We obtained the best performance (the standard error) on post-contrast T1-weighted (T1Gd)-area under curve [Formula: see text], accuracy [Formula: see text], precision [Formula: see text], recall [Formula: see text] and F1-score [Formula: see text], while compared with ML-based models on clinical data and radiomics data, respectively, further confirming the stability of our model. Also, we observed that PCNSL is a whole-brain disease and in the cases where the OS is less than 1 year, it is more difficult to distinguish the tumor boundary from the normal part of the brain, which is consistent with the clinical outcome. CONCLUSIONS: All these findings indicate that T1Gd can improve prognosis predictions of patients with PCNSL. To the best of our knowledge, this is the first time to use DL to explain model patterns in OS classification of patients with PCNSL. Future work would involve collecting more data of patients with PCNSL, or additional retrospective studies on different patient populations with rare diseases, to further promote the clinical role of our model.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Aprendizaje Profundo , Linfoma , Humanos , Estudios Retrospectivos , Linfoma/diagnóstico por imagen , Sistema Nervioso Central , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Neoplasias del Sistema Nervioso Central/terapia
7.
Bioengineering (Basel) ; 10(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36978676

RESUMEN

Primary Central Nervous System Lymphoma (PCNSL) is an aggressive neoplasm with a poor prognosis. Although therapeutic progresses have significantly improved Overall Survival (OS), a number of patients do not respond to HD-MTX-based chemotherapy (15-25%) or experience relapse (25-50%) after an initial response. The reasons underlying this poor response to therapy are unknown. Thus, there is an urgent need to develop improved predictive models for PCNSL. In this study, we investigated whether radiomics features can improve outcome prediction in patients with PCNSL. A total of 80 patients diagnosed with PCNSL were enrolled. A patient sub-group, with complete Magnetic Resonance Imaging (MRI) series, were selected for the stratification analysis. Following radiomics feature extraction and selection, different Machine Learning (ML) models were tested for OS and Progression-free Survival (PFS) prediction. To assess the stability of the selected features, images from 23 patients scanned at three different time points were used to compute the Interclass Correlation Coefficient (ICC) and to evaluate the reproducibility of each feature for both original and normalized images. Features extracted from Z-score normalized images were significantly more stable than those extracted from non-normalized images with an improvement of about 38% on average (p-value < 10-12). The area under the ROC curve (AUC) showed that radiomics-based prediction overcame prediction based on current clinical prognostic factors with an improvement of 23% for OS and 50% for PFS, respectively. These results indicate that radiomics features extracted from normalized MR images can improve prognosis stratification of PCNSL patients and pave the way for further study on its potential role to drive treatment choice.

8.
Med Phys ; 49(11): 6824-6839, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35982630

RESUMEN

BACKGROUND: Time-resolved 4D cone beam-computed tomography (4D-CBCT) allows a daily assessment of patient anatomy and respiratory motion. However, 4D-CBCTs suffer from imaging artifacts that affect the CT number accuracy and prevent accurate proton dose calculations. Deep learning can be used to correct CT numbers and generate synthetic CTs (sCTs) that can enable CBCT-based proton dose calculations. PURPOSE: In this work, sparse view 4D-CBCTs were converted into 4D-sCT utilizing a deep convolutional neural network (DCNN). 4D-sCTs were evaluated in terms of image quality and dosimetric accuracy to determine if accurate proton dose calculations for adaptive proton therapy workflows of lung cancer patients are feasible. METHODS: A dataset of 45 thoracic cancer patients was utilized to train and evaluate a DCNN to generate 4D-sCTs, based on sparse view 4D-CBCTs reconstructed from projections acquired with a 3D acquisition protocol. Mean absolute error (MAE) and mean error were used as metrics to evaluate the image quality of single phases and average 4D-sCTs against 4D-CTs acquired on the same day. The dosimetric accuracy was checked globally (gamma analysis) and locally for target volumes and organs-at-risk (OARs) (lung, heart, and esophagus). Furthermore, 4D-sCTs were also compared to 3D-sCTs. To evaluate CT number accuracy, proton radiography simulations in 4D-sCT and 4D-CTs were compared in terms of range errors. The clinical suitability of 4D-sCTs was demonstrated by performing a 4D dose reconstruction using patient specific treatment delivery log files and breathing signals. RESULTS: 4D-sCTs resulted in average MAEs of 48.1 ± 6.5 HU (single phase) and 37.7 ± 6.2 HU (average). The global dosimetric evaluation showed gamma pass ratios of 92.3% ± 3.2% (single phase) and 94.4% ± 2.1% (average). The clinical target volume showed high agreement in D98 between 4D-CT and 4D-sCT, with differences below 2.4% for all patients. Larger dose differences were observed in mean doses of OARs (up to 8.4%). The comparison with 3D-sCTs showed no substantial image quality and dosimetric differences for the 4D-sCT average. Individual 4D-sCT phases showed slightly lower dosimetric accuracy. The range error evaluation revealed that lung tissues cause range errors about three times higher than the other tissues. CONCLUSION: In this study, we have investigated the accuracy of deep learning-based 4D-sCTs for daily dose calculations in adaptive proton therapy. Despite image quality differences between 4D-sCTs and 3D-sCTs, comparable dosimetric accuracy was observed globally and locally. Further improvement of 3D and 4D lung sCTs could be achieved by increasing CT number accuracy in lung tissues.


Asunto(s)
Aprendizaje Profundo , Terapia de Protones , Humanos , Protones , Corazón
9.
Sci Rep ; 12(1): 12980, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902618

RESUMEN

Radiation therapy (RT) is now considered to be a main component of cancer therapy, alongside surgery, chemotherapy and monoclonal antibody-based immunotherapy. In RT, cancer tissues are exposed to ionizing radiation causing the death of malignant cells and favoring cancer regression. However, the efficiency of RT may be hampered by cell-radioresistance (RR)-that is a feature of tumor cells of withstanding RT. To improve the RT performance, it is decisive developing methods that can help to quantify cell sensitivity to radiation. In acknowledgment of the fact that none of the existing methods to assess RR are based on cell graphs topology, in this work we have examined how 2D cell networks, within a single colony, from different human lung cancer lines (H460, A549 and Calu-1) behave in response to doses of ionizing radiation ranging from 0 to 8 Gy. We measured the structure of resulting cell-graphs using well-assessed networks-analysis metrics, such as the clustering coefficient (cc), the characteristic path length (cpl), and the small world coefficient (SW). Findings of the work illustrate that the clustering characteristics of cell-networks show a marked sensitivity to the dose and cell line. Higher-than-one values of SW coefficient, clue of a discontinuous and inhomogeneous cell spatial layout, are associated to elevated levels of radiation and to a lower radio-resistance of the treated cell line. Results of the work suggest that topology could be used as a quantitative parameter to assess the cell radio-resistance and measure the performance of cancer radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Tolerancia a Radiación , Línea Celular Tumoral , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Radiación Ionizante
10.
J Pers Med ; 12(3)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35330411

RESUMEN

Coronary Angiography (CA) is the standard of reference to diagnose coronary artery disease. Yet, only a portion of the information it conveys is usually used. Quantitative Coronary Angiography (QCA) reliably contributes to improving the measurable assessment of CA. In this work, we developed a new software, CoroFinder, able to automatically identify epicardial coronary arteries and to dynamically track the vessel profile in dye-free frames. The coronary tree is automatically segmented by Frangi's filter in the angiogram's frames where vessels are contrasted ("template frames"). Afterward, the image similarity among each template frame and the dye-free images is scored by cross-correlation. Finally, each dye-free image is associated with the most similar template frame, resulting in an estimation of vessel contour. CoroFinder allows locating the position of coronary arteries in absence of contrast dye. The developed algorithm is robust to diverse vessel curvatures, variation of vessel widths, and the presence of stenoses. This article describes the newly developed CoroFinder algorithm and the associated software and provides an overview of its potential application in research and for translation to the clinic.

11.
Methods Mol Biol ; 2401: 69-78, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34902123

RESUMEN

Microarray is a powerful technology that enables the monitoring of expression levels for thousands of genes simultaneously, providing scientists with a full overview about DNA and RNA investigation. The process is made of three main phases: interaction with biological samples, data extraction, and data analysis. In particular, the data extraction phase strongly relies on image processing algorithms, since the expression levels are revealed by the interaction of light with fluorescent markers. More in detail, in order to extract quantitative information from probes image, three steps are required: (1) gridding, (2) segmentation, and (3) intensity quantification. Errors in one of these steps can deeply affect the process outcome. In this chapter each of the above mentioned steps will be analyzed and discussed. Software platforms dedicated to this purpose will be reported as well.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Análisis de Secuencia por Matrices de Oligonucleótidos , Programas Informáticos
12.
Med Phys ; 48(12): 7673-7684, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34725829

RESUMEN

PURPOSE: Adaptive proton therapy (APT) of lung cancer patients requires frequent volumetric imaging of diagnostic quality. Cone-beam CT (CBCT) can provide these daily images, but x-ray scattering limits CBCT-image quality and hampers dose calculation accuracy. The purpose of this study was to generate CBCT-based synthetic CTs using a deep convolutional neural network (DCNN) and investigate image quality and clinical suitability for proton dose calculations in lung cancer patients. METHODS: A dataset of 33 thoracic cancer patients, containing CBCTs, same-day repeat CTs (rCT), planning-CTs (pCTs), and clinical proton treatment plans, was used to train and evaluate a DCNN with and without a pCT-based correction method. Mean absolute error (MAE), mean error (ME), peak signal-to-noise ratio, and structural similarity were used to quantify image quality. The evaluation of clinical suitability was based on recalculation of clinical proton treatment plans. Gamma pass ratios, mean dose to target volumes and organs at risk, and normal tissue complication probabilities (NTCP) were calculated. Furthermore, proton radiography simulations were performed to assess the HU-accuracy of sCTs in terms of range errors. RESULTS: On average, sCTs without correction resulted in a MAE of 34 ± 6 HU and ME of 4 ± 8 HU. The correction reduced the MAE to 31 ± 4HU (ME to 2 ± 4HU). Average 3%/3 mm gamma pass ratios increased from 93.7% to 96.8%, when the correction was applied. The patient specific correction reduced mean proton range errors from 1.5 to 1.1 mm. Relative mean target dose differences between sCTs and rCT were below ± 0.5% for all patients and both synthetic CTs (with/without correction). NTCP values showed high agreement between sCTs and rCT (<2%). CONCLUSION: CBCT-based sCTs can enable accurate proton dose calculations for APT of lung cancer patients. The patient specific correction method increased the image quality and dosimetric accuracy but had only a limited influence on clinically relevant parameters.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Terapia de Protones , Tomografía Computarizada de Haz Cónico , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
13.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576263

RESUMEN

Breast cancer is the most frequent cancer in women worldwide and late diagnosis often adversely affects the prognosis of the disease. Radiotherapy is commonly used to treat breast cancer, reducing the risk of recurrence after surgery. However, the eradication of radioresistant cancer cells, including cancer stem cells, remains the main challenge of radiotherapy. Recently, lipid droplets (LDs) have been proposed as functional markers of cancer stem cells, also being involved in increased cell tumorigenicity. LD biogenesis is a multistep process requiring various enzymes, including Diacylglycerol acyltransferase 2 (DGAT2). In this context, we evaluated the effect of PF-06424439, a selective DGAT2 inhibitor, on MCF7 breast cancer cells exposed to X-rays. Our results demonstrated that 72 h of PF-06424439 treatment reduced LD content and inhibited cell migration, without affecting cell proliferation. Interestingly, PF-06424439 pre-treatment followed by radiation was able to enhance radiosensitivity of MCF7 cells. In addition, the combined treatment negatively interfered with lipid metabolism-related genes, as well as with EMT gene expression, and modulated the expression of typical markers associated with the CSC-like phenotype. These findings suggest that PF-06424439 pre-treatment coupled to X-ray exposure might potentiate breast cancer cell radiosensitivity and potentially improve the radiotherapy effectiveness.


Asunto(s)
Neoplasias de la Mama/radioterapia , Diacilglicerol O-Acetiltransferasa/metabolismo , Gotas Lipídicas/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Relación Dosis-Respuesta en la Radiación , Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal , Femenino , Regulación de la Expresión Génica , Humanos , Imidazoles/farmacología , Metabolismo de los Lípidos/fisiología , Lípidos , Células MCF-7 , Fenotipo , Piridinas/farmacología , Especies Reactivas de Oxígeno , Rayos X
14.
Med Phys ; 48(11): 6537-6566, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34407209

RESUMEN

Recently,deep learning (DL)-based methods for the generation of synthetic computed tomography (sCT) have received significant research attention as an alternative to classical ones. We present here a systematic review of these methods by grouping them into three categories, according to their clinical applications: (i) to replace computed tomography in magnetic resonance (MR) based treatment planning, (ii) facilitate cone-beam computed tomography based image-guided adaptive radiotherapy, and (iii) derive attenuation maps for the correction of positron emission tomography. Appropriate database searching was performed on journal articles published between January 2014 and December 2020. The DL methods' key characteristics were extracted from each eligible study, and a comprehensive comparison among network architectures and metrics was reported. A detailed review of each category was given, highlighting essential contributions, identifying specific challenges, and summarizing the achievements. Lastly, the statistics of all the cited works from various aspects were analyzed, revealing the popularity and future trends and the potential of DL-based sCT generation. The current status of DL-based sCT generation was evaluated, assessing the clinical readiness of the presented methods.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X
15.
Bioengineering (Basel) ; 8(2)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669235

RESUMEN

The coronavirus disease 19 (COVID-19) pandemic is having a dramatic impact on society and healthcare systems. In this complex scenario, lung computerized tomography (CT) may play an important prognostic role. However, datasets released so far present limitations that hamper the development of tools for quantitative analysis. In this paper, we present an open-source lung CT dataset comprising information on 50 COVID-19-positive patients. The CT volumes are provided along with (i) an automatic threshold-based annotation obtained with a Gaussian mixture model (GMM) and (ii) a scoring provided by an expert radiologist. This score was found to significantly correlate with the presence of ground glass opacities and the consolidation found with GMM. The dataset is freely available in an ITK-based file format under the CC BY-NC 4.0 license. The code for GMM fitting is publicly available, as well. We believe that our dataset will provide a unique opportunity for researchers working in the field of medical image analysis, and hope that its release will lay the foundations for the successfully implementation of algorithms to support clinicians in facing the COVID-19 pandemic.

16.
Bioengineering (Basel) ; 7(3)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32932840

RESUMEN

Interaction between medical image platform and external environment is a desirable feature in several clinical, research, and educational scenarios. In this work, the integration between 3D Slicer package and Arduino board is introduced, enabling a simple and useful communication between the two software/hardware platforms. The open source extension, programmed in Python language, manages the connection process and offers a communication layer accessible from any point of the medical image suite infrastructure. Deep integration with 3D Slicer code environment is provided and a basic input-output mechanism accessible via GUI is also made available. To test the proposed extension, two exemplary use cases were implemented: (1) INPUT data to 3D Slicer, to navigate on basis of data detected by a distance sensor connected to the board, and (2) OUTPUT data from 3D Slicer, to control a servomotor on the basis of data computed through image process procedures. Both goals were achieved and quasi-real-time control was obtained without any lag or freeze, thus boosting the integration between 3D Slicer and Arduino. This integration can be easily obtained through the execution of few lines of Python code. In conclusion, SlicerArduino proved to be suitable for fast prototyping, basic input-output interaction, and educational purposes. The extension is not intended for mission-critical clinical tasks.

17.
Ann Biomed Eng ; 48(8): 2171-2191, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32601951

RESUMEN

With the advent of Minimally Invasive Surgery (MIS), intra-operative imaging has become crucial for surgery and therapy guidance, allowing to partially compensate for the lack of information typical of MIS. This paper reviews the advancements in both classical (i.e. ultrasounds, X-ray, optical coherence tomography and magnetic resonance imaging) and more recent (i.e. multispectral, photoacoustic and Raman imaging) intra-operative imaging modalities. Each imaging modality was analyzed, focusing on benefits and disadvantages in terms of compatibility with the operating room, costs, acquisition time and image characteristics. Tables are included to summarize this information. New generation of hybrid surgical room and algorithms for real time/in room image processing were also investigated. Each imaging modality has its own (site- and procedure-specific) peculiarities in terms of spatial and temporal resolution, field of view and contrasted tissues. Besides the benefits that each technique offers for guidance, considerations about operators and patient risk, costs, and extra time required for surgical procedures have to be considered. The current trend is to equip surgical rooms with multimodal imaging systems, so as to integrate multiple information for real-time data extraction and computer-assisted processing. The future of surgery is to enhance surgeons eye to minimize intra- and after-surgery adverse events and provide surgeons with all possible support to objectify and optimize the care-delivery process.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Procedimientos Quirúrgicos Mínimamente Invasivos , Quirófanos , Humanos
18.
Radiat Oncol ; 15(1): 129, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471500

RESUMEN

BACKGROUND: The targeting accuracy of proton therapy (PT) for moving soft-tissue tumours is expected to greatly improve by real-time magnetic resonance imaging (MRI) guidance. The integration of MRI and PT at the treatment isocenter would offer the opportunity of combining the unparalleled soft-tissue contrast and real-time imaging capabilities of MRI with the most conformal dose distribution and best dose steering capability provided by modern PT. However, hybrid systems for MR-integrated PT (MRiPT) have not been realized so far due to a number of hitherto open technological challenges. In recent years, various research groups have started addressing these challenges and exploring the technical feasibility and clinical potential of MRiPT. The aim of this contribution is to review the different aspects of MRiPT, to report on the status quo and to identify important future research topics. METHODS: Four aspects currently under study and their future directions are discussed: modelling and experimental investigations of electromagnetic interactions between the MRI and PT systems, integration of MRiPT workflows in clinical facilities, proton dose calculation algorithms in magnetic fields, and MRI-only based proton treatment planning approaches. CONCLUSIONS: Although MRiPT is still in its infancy, significant progress on all four aspects has been made, showing promising results that justify further efforts for research and development to be undertaken. First non-clinical research solutions have recently been realized and are being thoroughly characterized. The prospect that first prototype MRiPT systems for clinical use will likely exist within the next 5 to 10 years seems realistic, but requires significant work to be performed by collaborative efforts of research groups and industrial partners.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Terapia de Protones/métodos , Radioterapia Guiada por Imagen/métodos , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética/instrumentación , Sistemas en Línea , Terapia de Protones/instrumentación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/instrumentación , Flujo de Trabajo
19.
Int J Mol Sci ; 21(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046139

RESUMEN

The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood-brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.


Asunto(s)
Inmunidad Innata , Trastornos Mentales/inmunología , Enfermedades Neurodegenerativas/inmunología , Animales , Humanos
20.
Med Hypotheses ; 131: 109281, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31443770

RESUMEN

The data of literature are discordant about the role of mast cells in different types of neoplasms. In this paper the authors propose the hypothesis that tumor-associated mast cells may switch to different polarization states, conditioning the immunogenic capacities of the different neoplasms. Anti-inflammatory polarized mast cells should express cytokines such as interleukin-10 (IL-10) and then mast cells number should be inversely related to the intensity of inflammatory infiltrate. On the contrary, when mast cells do not express anti-inflammatory cytokines their number should be directly related to the intensity of the inflammatory infiltrate. In this paper we briefly argue around feasible approaches, based on the retrospective studies of tumor tissue samples from neoplasms considered "immunologically hot" and neoplasms considered "immunologically cold", through immunohistochemistry and immunofluorescence techniques (confocal microscopy). The establishment of the actual existence of a polarization interchange of mast cells, could lead to a new vision in prognostic terms, useful to contrive new approaches in immunotherapy of tumors.


Asunto(s)
Citocinas/biosíntesis , Mastocitos/inmunología , Modelos Inmunológicos , Neoplasias/inmunología , Antígenos CD/análisis , Antígenos de Diferenciación Mielomonocítica/análisis , Antígenos de Neoplasias/análisis , Recuento de Células , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Inmunoquímica , Inflamación , Linfocitos Infiltrantes de Tumor/química , Macrófagos/química , Mastocitos/metabolismo , Mastocitos/ultraestructura , Microscopía Confocal , Neoplasias/química , Neoplasias/ultraestructura , Adhesión en Parafina , Proteínas Proto-Oncogénicas c-kit/análisis , Receptores de Superficie Celular/análisis , Proyectos de Investigación , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA