RESUMEN
Sclareol (SC) is arousing great interest due to its cytostatic and cytotoxic activities in several cancer cell lines. However, its hydrophobicity is a limiting factor for its in vivo administration. One way to solve this problem is through nanoencapsulation. Therefore, solid lipid nanoparticles (SLN-SC) and nanostructured lipid carriers (NLC-SC) loaded with SC were produced and compared regarding their physicochemical properties. NLC-SC showed better SC encapsulation than SLN-SC and was chosen to be compared with free SC in human cancer cell lines (MDA-MB-231 and HCT-116). Free SC had slightly higher cytotoxicity than NLC-SC and produced subdiploid DNA content in both cell lines. On the other hand, NLC-SC led to subdiploid content in MDA-MB-231 cells and G2/M checkpoint arrest in HCT-116 cells. These findings suggest that SC encapsulation in NLC is a way to allow the in vivo administration of SC and might alter its biological properties