Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968940

RESUMEN

BACKGROUND AND AIM: Plant disjunctions have fascinated biogeographers and ecologists for a long time. We use tribe Bocageeae (Annonaceae), a predominantly Neotropical plant group distributed across several present-day Neotropical biomes and with an African-American disjunction, to investigate long-distance dispersal mediated by frugivorous animals at both intercontinental and intracontinental scales. METHODS: We reconstructed a species-level phylogeny of tribe Bocageeae with a dataset composed of 116 nuclear markers. We sampled 70% of Bocageeae species, covering its geographic range and representing all eight genera. We estimated divergence times using BEAST, inferred ancestral range distributions and reconstructed ancestral states for fruit traits related to long-distance dispersal in a Bayesian framework. KEY RESULTS: The ancestral Bocageeae date to the Early Eocene and were inferred to occur in Africa and proto-Amazonia. Its ancestral fruits were large and dehiscent. The first lineage split gave rise to an exclusively Neotropical clade during the Middle Eocene, in proto-Amazonia. Range exchange between the Amazon and the Atlantic Forest occurred at least once during the Miocene, and from Amazonia to Central America and Mexico, during the Early Miocene. Transitions in different sets of fruit morphologies were inferred to be related to dispersal events across South American regions/biomes. CONCLUSIONS: In Bocageeae mammals may have been responsible for long-distance dispersal through the Boreotropics. In the Neotropics, proto-Amazonia is proposed to be the source for dispersal to other tropical American biomes. Long-distance dispersal may have happened via a wide range of dispersal guilds, depending on frugivore radiations, diversity, and abundance at particular time periods and places. Hence, inter- and intracontinental dispersal may not rely on a single dispersal syndrome or guild, but more on the availability of frugivorous lineages for seed dispersal.

2.
PhytoKeys ; 227: 181-198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396012

RESUMEN

Flagelliflory refers to the production of inflorescences exclusively on long, whip-like branches which emerge from the main trunk and extend along the ground or below it. It is the rarest type of cauliflory and only a few cases have been reported in the world. Here, a new species of Annonaceae with flagelliflory is described and illustrated. The phylogenetic relationships of the new species were inferred using a hybrid-capture phylogenomic approach and we present some notes on its reproductive ecology and pollen characteristics. The new species, namely Desmopsisterriflorasp. nov., is part of a clade composed of Mexican species of Stenanona with long, awned petals. Desmopsisterriflora is distinguished by its flageliflorous inflorescences, basely fused sepals, thick red petals, reduced number of ovules per carpel, pollen grains with a weakly rugulate to fossulate exine ornamentation, and its globose, apiculate fruits with a woody testa. The morphological characteristics of the flagella suggest that these are specialized branches rather than inflorescences, and the absence of ramiflory implies an exclusively reproductive function. The flowers are infrequently visited by insects, their potential pollinators being flies and ants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA