Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Rec ; 24(2): e202300258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37753806

RESUMEN

This review disclosed synthetic approaches to sulfonyl amides from non-sulfonyl halogenated precursors. Known methods were systematized into groups and subgroups according to the type of starting organosulfur compound. Thiols, disulfides, and sulfonamides form a group of S(II)-containing precursors, which are used in oxidative amination reactions. An important and versatile group for oxidative amination is represented with S(IV)-containing compounds, i. e., sufinates, sulfinamides, DMSO, N-sulfinyl-O-(tert-butyl)hydroxylamine, etc. A series of S(VI)-containing precursors for amination reactions (except sulfonyl halides) include sulfonic acids, sulfonyl azides, thiosulfonates, and sulfones. All approaches are represented with the most prominent examples of the resulting sulfonamides, which could be obtained in high yields mostly via short reaction sequences. Promising electrochemical methods for the preparation of sulfonamides from thiols, disulfides, sulfonamides, sulfinic acid derivatives, and dimethyl sulfoxide under mild and green conditions are also highlighted.

2.
J Am Chem Soc ; 143(28): 10770-10777, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34253021

RESUMEN

Metal-catalyzed enantioselective conjugate additions are highly reliable methods for stereoselective synthesis; however, multicomponent reactions that are initiated by conjugate arylation of acyclic π-systems are rare. These reactions generally proceed with poor diastereoselectivity while requiring basic, moisture sensitive organometallic nucleophiles. Here, we show that Rh-catalysts supported by a tetrafluorobenzobarrelene ligand (Ph-tfb) enable the enantio-, diastereo-, and Z-selective α,δ-difunctionalization of electron-deficient 1,3-dienes with organoboronic acid nucleophiles and aldehyde electrophiles to generate Z-homoallylic alcohols with three stereocenters. The reaction accommodates diene substrates activated by ester, amide, ketone, or aromatic groups and can be used to couple aryl, alkenyl, or alkyl aldehydes. Diastereoselective functionalization of the Z-olefin unit in the addition products allows for the generation of compounds with five stereocenters in high dr and ee. Mechanistic studies suggest aldehyde allylrhodation is the rate-determining step, and unlike reactions of analogous Rh-enolates, the Rh-allyl species generated by δ-arylation undergoes aldehyde trapping rather than protonolysis, even when water is present as a cosolvent. These findings should have broader implications in the use of privileged metal-catalyzed conjugate addition reactions as entry points toward the preparation of acyclic molecules containing nonadjacent stereocenters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA