Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Astron ; 6(8): 951-960, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35971330

RESUMEN

Chondritic meteorites are thought to be representative of the material that formed the Earth. However, the Earth is depleted in volatile elements in a manner unlike that in any chondrite, and yet these elements retain chondritic isotope ratios. Here we use N-body simulations to show that the Earth did not form from chondrites, but rather by stochastic accretion of many precursor bodies whose variable compositions reflect the temperatures at which they formed. Earth's composition is reproduced when initial temperatures of planetesimal- to embryo-sized bodies are set by disk accretion rates of (1.08±0.17)×10-7 solar masses/yr, although they may be perturbed by 26Al heating on bodies formed at different times. Our model implies that a heliocentric gradient in composition was present in the protoplanetary disc and that planetesimals formed rapidly within ~1 Myr, in accord with radiometric volatile depletion ages of the Earth.

2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723067

RESUMEN

Rocks from the lunar interior are depleted in moderately volatile elements (MVEs) compared to terrestrial rocks. Most MVEs are also enriched in their heavier isotopes compared to those in terrestrial rocks. Such elemental depletion and heavy isotope enrichments have been attributed to liquid-vapor exchange and vapor loss from the protolunar disk, incomplete accretion of MVEs during condensation of the Moon, and degassing of MVEs during lunar magma ocean crystallization. New Monte Carlo simulation results suggest that the lunar MVE depletion is consistent with evaporative loss at 1,670 ± 129 K and an oxygen fugacity +2.3 ± 2.1 log units above the fayalite-magnetite-quartz buffer. Here, we propose that these chemical and isotopic features could have resulted from the formation of the putative Procellarum basin early in the Moon's history, during which nearside magma ocean melts would have been exposed at the surface, allowing equilibration with any primitive atmosphere together with MVE loss and isotopic fractionation.

3.
Sci Adv ; 6(48)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33239296

RESUMEN

Exchange between a magma ocean and vapor produced Earth's earliest atmosphere. Its speciation depends on the oxygen fugacity (fO2) set by the Fe3+/Fe2+ ratio of the magma ocean at its surface. Here, we establish the relationship between fO2 and Fe3+/Fe2+ in quenched liquids of silicate Earth-like composition at 2173 K and 1 bar. Mantle-derived rocks have Fe3+/(Fe3++Fe2+) = 0.037 ± 0.005, at which the magma ocean defines an fO2 0.5 log units above the iron-wüstite buffer. At this fO2, the solubilities of H-C-N-O species in the magma ocean produce a CO-rich atmosphere. Cooling and condensation of H2O would have led to a prebiotic terrestrial atmosphere composed of CO2-N2, in proportions and at pressures akin to those observed on Venus. Present-day differences between Earth's atmosphere and those of her planetary neighbors result from Earth's heliocentric location and mass, which allowed geologically long-lived oceans, in-turn facilitating CO2 drawdown and, eventually, the development of life.

4.
Proc Natl Acad Sci U S A ; 115(43): 10920-10925, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297398

RESUMEN

Terrestrial and lunar rocks share chemical and isotopic similarities in refractory elements, suggestive of a common precursor. By contrast, the marked depletion of volatile elements in lunar rocks together with their enrichment in heavy isotopes compared with Earth's mantle suggests that the Moon underwent evaporative loss of volatiles. However, whether equilibrium prevailed during evaporation and, if so, at what conditions (temperature, pressure, and oxygen fugacity) remain unconstrained. Chromium may shed light on this question, as it has several thermodynamically stable, oxidized gas species that can distinguish between kinetic and equilibrium regimes. Here, we present high-precision Cr isotope measurements in terrestrial and lunar rocks that reveal an enrichment in the lighter isotopes of Cr in the Moon compared with Earth's mantle by 100 ± 40 ppm per atomic mass unit. This observation is consistent with Cr partitioning into an oxygen-rich vapor phase in equilibrium with the proto-Moon, thereby stabilizing the CrO2 species that is isotopically heavy compared with CrO in a lunar melt. Temperatures of 1,600-1,800 K and oxygen fugacities near the fayalite-magnetite-quartz buffer are required to explain the elemental and isotopic difference of Cr between Earth's mantle and the Moon. These temperatures are far lower than modeled in the aftermath of a giant impact, implying that volatile loss did not occur contemporaneously with impact but following cooling and accretion of the Moon.

5.
MethodsX ; 1: 144-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26150946

RESUMEN

A combined procedure for separating Fe and Hf from a single rock digestion is presented. In a two-stage chromatographic extraction process, a purified Fe fraction is first quantitatively separated from the rock matrix using AG-MP-1M resin in HCl. Hafnium is subsequently isolated using a modified version of a commonly applied method using Eichrom LN-Spec resin. Our combined method includes:•Purification of Fe from the rock matrix using HCl, ready for mass spectrometric analysis.•Direct loading of the matrix onto the resin that is used for Hf purification.•Collection of a Fe-free Hf fraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA