Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272419

RESUMEN

Third-generation snacks were developed from a triad of flours made up of chestnut, spelt, and chickpea flour. Optimal snack formulations and processing parameters have been established to ensure acceptable workability of the raw dough while protecting the bioactive components of the raw materials. The parameters examined were mixing time, speed, and temperature. The properties of the snack were evaluated by analyzing the expansion ratio, hardness, moisture content, and phenolic and volatile compounds. The optimal mixing conditions that ensure maximum expansion were a temperature of 30 °C, a speed of 30 rpm, and a time of 6 min. The results showed that the proper percentage of water and sodium bicarbonate was 35% and 2%, respectively, and that the developed snacks had an alveolar and homogeneous structure. The proposed approach brings several advantages, including the preservation of bioactive compounds during the production process. Furthermore, the mild operating conditions prevented the development of unwanted or unpleasant compounds, as confirmed by the analysis of volatile compounds. Therefore, this study opens new perspectives in the food industry, satisfying the growing demand for functional products and healthy snacks.

2.
Chem Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39156928

RESUMEN

Depositing single paramagnetic molecules on surfaces for sensing and quantum computing applications requires subtle topological control. To overcome issues that are often encountered with sandwich metal complexes, we exploit here the low symmetry architecture and suitable vaporability of mixed-sandwich [FluTi(cot)], Flu = fluorenyl, cot = cyclooctatetraene, to drive submonolayer coverage and select an adsorption configuration that preserves the spin of molecules deposited on Au(111). Electron paramagnetic resonance spectroscopy and ab initio quantum computation evidence a d z 2 ground state that protects the spin from phonon-induced relaxation. Additionally, computed and measured spin coherence times exceed 10 µs despite the molecules being rich in hydrogen. A thorough submonolayer investigation by scanning tunneling microscopy, X-ray photoelectron and absorption spectrocopies and X-ray magnetic circular dichroism measurements supported by DFT calculations reveals that the most stable configuration, with the fluorenyl in contact with the metal surface, prevents titanium(iii) oxidation and spin delocalization to the surface. This is a necessary condition for single molecular spin qubit addressing on surfaces.

3.
J Clin Med ; 13(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39124810

RESUMEN

Background: Real-world data on the use of lipid-lowering therapy (LLT) in clinical practice show that about 80% of (very) high-cardiovascular (CV)-risk patients disregard the 2019 European Society of Cardiology (ESC) Guidelines' recommendations on dyslipidemias. The availability of proprotein convertase subtilisin/kexin type 9 monoclonal antibodies (PCSK9mAb) should reduce this gap. Our aim was to provide data on PCSK9mAb use in clinical practice, investigating the achievement of the ESC Guidelines' recommendations in the real world. Methods: Between April 2018 and December 2022, patients who started on PCSK9mAb therapy (140 mg of evolocumab or 75 mg or 150 mg of alirocumab, subcutaneous injection every 2 weeks) were included in a prospective registry. Our cohort consisted of 256 patients: 95 (37.1%) were women (mean age: 65.43 ± 11.12 yrs), 53 (20.7%) were at high CV risk, and 203 (79.3%) were at very high CV risk. Results: After one year of PCSK9mAb treatment, nearly 60% of patients demonstrated full adherence to the ESC Guidelines' recommendations, defined as achieving at least a 50% reduction in low-density lipoprotein cholesterol (LDL-C) levels along with reaching LDL-C target levels (≤55 and ≤70 mg/dL for very high and high risk, respectively). Concomitant high-dose statin therapy emerged as the primary predictor of LDL-C target attainment. Heterozygous familial hypercholesterolemia (HeFH), statin intolerance, and female gender were associated with a significant lower probability of achieving LDL-C target levels. Conclusions: Our analysis confirms that PCSK9mAb treatment is safe and effective, enabling 60% of our cohort to fully achieve the LDL-C guideline recommendations. The use of high-intensity statins emerged as a significant predictor of efficacy. Conversely, familial hypercholesterolemia and female gender were identified as predictors of therapeutic failure. Hence, it is crucial to address disparities in cardiovascular disease prevention between genders and to enhance strategies for managing elevated LDL-C in HeFH patients.

4.
Nanoscale ; 16(30): 14378-14386, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38993100

RESUMEN

The decoration of technologically relevant surfaces, such as metal oxides, with Single-Molecule Magnets (SMMs) constitutes a persistent challenge for the integration of these molecular systems into novel technologies and, in particular, for the development of spintronic and quantum devices. We used UHV thermal sublimation to deposit tetrairon(III) propeller-shaped SMMs (Fe4) as a single layer on a TiO2 ultrathin film grown on Cu(001). The properties of the molecular deposit were studied using a multi-technique approach based on standard topographic and spectroscopic measurements, which demonstrated that molecules remain largely intact upon deposition. Ultralow temperature X-ray Absorption Spectroscopy (XAS) with linearly and circularly polarized light was further employed to evaluate both the molecular organization and the magnetic properties of the Fe4 monolayer. X-ray Natural Linear Dichroism (XNLD) and X-ray Magnetic Circular Dichroism (XMCD) showed that molecules in a monolayer display a preferential orientation and an open magnetic hysteresis with pronounced quantum tunnelling steps up to 900 mK. However, unexpected extra features in the XAS and XMCD spectra disclosed a minority fraction of altered molecules, suggesting that the TiO2 film may be chemically non-innocent. The observed persistence of SMM behaviour on a metal oxide thin film opens new possibilities for the development of SMM-based hybrid systems.

5.
Cardiovasc Diabetol ; 23(1): 258, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026321

RESUMEN

BACKGROUND: Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS: Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS: We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION: We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.


Asunto(s)
Insulina , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos , Fosfoproteínas , Proteómica , Transducción de Señal , Animales , Miocitos Cardíacos/metabolismo , Masculino , Insulina/metabolismo , Fosforilación , Fosfoproteínas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Receptor de Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones
6.
Polymers (Basel) ; 16(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891456

RESUMEN

This work concerns the verification of the self-healing ability of PP-co-HUPy copolymers dispersed in epoxy systems. PP is the acronym for the Poly-PEGMA polymer, and HUPy refers to the HEMA-UPy copolymers based on ureidopyrimidinone (UPy) moieties. In particular, this work aims to verify whether this elastomer characterized by an intrinsic self-healing ability can activate supramolecular interactions among polymer chains of an epoxy resin, as in the elastomer alone. The elastomer includes a class of polyethylene glycol monomethyl ether methacrylate-based copolymers, with different percentages of urea-N-2-amino-4-hydroxy-6-methyl pyrimidine-N'-(hexamethylene-n-carboxyethyl methacrylate) (HEMA-UPy) co-monomers. The self-healing capability of these copolymers based on possible quadruple hydrogen bond interactions between polymer chains has been verified. The formulated epoxy samples did not show self-healing efficiency. This can be attributed to the formation of phase segregation that originates during the curing process of the samples, although the PP-co-HUPy copolymers are completely soluble in the liquid epoxy matrix EP. The morphological investigation highlighted the presence of crystals of PP-co-HUPy copolymers, which are in greater quantity in the sample containing the highest weight percentage (7.8 wt%) of HUPy units. Furthermore, the crystals act as promotors for increasing the curing degree (DC) of the epoxy systems containing HUPy units. DC goes from 91.6% for EP to 96.1% and 95.4% for the samples containing weight percentages of 2.5 and 7.8 wt% of HUPy units, respectively. Dynamic mechanical analysis (DMA) shows storage modulus values for epoxy systems containing PP-co-HUPy units lower than that of the unfilled resin EP. The values of maximum in Tan δ (Tg), representing the temperature at which the glass transition occurs, are 220 for the unfilled resin EP, 228 for the sample containing 2.5 wt% of HEMA-UPy units, and 211 for the sample containing 7.8 wt% of HEMA-UPy units.

7.
Cardiovasc Res ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832935

RESUMEN

AIMS: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used to treat type 2 diabetes and obesity. Albeit cardiovascular outcomes generally improve, treatment with GLP-1 RAs is associated with increased heart rate, the mechanism of which is unclear. METHODS AND RESULTS: We employed a large animal model, the female landrace pig, and used multiple in-vivo and ex-vivo approaches including pharmacological challenges, electrophysiology and high-resolution mass spectrometry to explore how GLP-1 elicits an increase in heart rate. In anaesthetized pigs, neither cervical vagotomy, adrenergic blockers (alpha, beta or combined alpha-beta blockade), ganglionic blockade (hexamethonium) nor inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ivabradine) abolished the marked chronotropic effect of GLP-1. GLP-1 administration to isolated perfused pig hearts also increased heart rate, which was abolished by GLP-1 receptor blockade. Electrophysiological characterization of GLP-1 effects in vivo and in isolated perfused hearts localized electrical modulation to the atria and conduction system. In isolated sinus nodes, GLP-1 administration shortened action potential cycle length of pacemaker cells and shifted the site of earliest activation. The effect was independent of HCN blockade. Collectively, these data support a direct effect of GLP-1 on GLP-1 receptors within the heart. Consistently, single nucleus RNA sequencing (snRNAseq) showed GLP-1 receptor expression in porcine pacemaker cells. Quantitative phosphoproteomics analyses of sinus node samples revealed that GLP-1 administration leads to phosphorylation changes of calcium cycling proteins of the sarcoplasmic reticulum, known to regulate heart rate. CONCLUSION: GLP-1 has direct chronotropic effects on the heart mediated by GLP-1 receptors in pacemaker cells of the sinus node, inducing changes in action potential morphology and the leading pacemaker site through a calcium signaling response characterized by PKA-dependent phosphorylation of Ca2+ cycling proteins involved in pace making. Targeting the pacemaker calcium clock may be a strategy to lower heart rate in GLP-1 RA recipients.

8.
Materials (Basel) ; 17(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38730790

RESUMEN

The knowledge of the mechanical behavior of a 3D-printed material is fundamental for the 3D printing outbreaking technology to be considered for a range of applications. In this framework, the significance, reliability, and accuracy of the information obtained by testing material coupons assumes a pivotal role. The present work focuses on an evaluation of the static mechanical properties and failure modes of a 3D-printed short carbon fiber-reinforced polyamide in relation to the specimen's unique meso-structural morphology and water content. Within the manufacturing limitations of a commercially available printer, specimens of dedicated combinations of geometry and printing patterns were specifically conceived and tested. The specimens' meso-structure morphologies were investigated by micro-computed tomography. The material failure mechanisms were inferred from an analysis of the specimens' fracture surfaces and failure morphologies. The outcomes of the present analysis indicate that each test specimen retained proper mechanical properties, thereby suggesting that they should be accurately designed to deliver representative information of the underlying material beads or of their deposition layout. Suggestions on the adoption of preferred test specimens for evaluating specific material properties were proposed.

9.
Cardiovasc Res ; 120(8): 927-942, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38661182

RESUMEN

AIMS: In patients with heart failure (HF), concomitant sinus node dysfunction (SND) is an important predictor of mortality, yet its molecular underpinnings are poorly understood. Using proteomics, this study aimed to dissect the protein and phosphorylation remodelling within the sinus node in an animal model of HF with concurrent SND. METHODS AND RESULTS: We acquired deep sinus node proteomes and phosphoproteomes in mice with heart failure and SND and report extensive remodelling. Intersecting the measured (phospho)proteome changes with human genomics pharmacovigilance data, highlighted downregulated proteins involved in electrical activity such as the pacemaker ion channel, Hcn4. We confirmed the importance of ion channel downregulation for sinus node physiology using computer modelling. Guided by the proteomics data, we hypothesized that an inflammatory response may drive the electrophysiological remodeling underlying SND in heart failure. In support of this, experimentally induced inflammation downregulated Hcn4 and slowed pacemaking in the isolated sinus node. From the proteomics data we identified proinflammatory cytokine-like protein galectin-3 as a potential target to mitigate the effect. Indeed, in vivo suppression of galectin-3 in the animal model of heart failure prevented SND. CONCLUSION: Collectively, we outline the protein and phosphorylation remodeling of SND in heart failure, we highlight a role for inflammation in electrophysiological remodelling of the sinus node, and we present galectin-3 signalling as a target to ameliorate SND in heart failure.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ratones Endogámicos C57BL , Proteómica , Síndrome del Seno Enfermo , Nodo Sinoatrial , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/fisiopatología , Fosforilación , Síndrome del Seno Enfermo/metabolismo , Síndrome del Seno Enfermo/fisiopatología , Síndrome del Seno Enfermo/genética , Masculino , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Inflamación/fisiopatología , Inflamación/patología , Frecuencia Cardíaca , Canales de Potasio/metabolismo , Canales de Potasio/genética , Simulación por Computador , Modelos Cardiovasculares , Humanos , Transducción de Señal , Potenciales de Acción
10.
Nanomaterials (Basel) ; 13(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686935

RESUMEN

This study focuses on epoxy hybrid systems prepared by incorporating multi-wall carbon nanotubes (MWCNTs) and graphene nanosheets (GNs) at two fixed filler amounts: below (0.1 wt%) and above (0.5 wt%), with varying MWCNT:GN mix ratios. The hybrid epoxy systems exhibited remarkable electrical performance, attributed to the π-π bond interactions between the multi-wall carbon nanotubes and the graphene layers dispersed in the epoxy resin matrix. The material's properties were characterized through dynamic mechanical and thermal analyses over a wide range of temperatures. In addition to excellent electrical properties, the formulated hybrid systems demonstrated high mechanical performance and thermal stability. Notably, the glass transition temperature of the samples reached 255 °C, and high storage modulus values at elevated temperatures were observed. The hybrid systems also displayed thermal stability up to 360 °C in air. By comparing the mechanical and electrical performance, the formulation can be optimized in terms of the electrical percolation threshold (EPT), electrical conductivity, thermostability, and mechanical parameters. This research provides valuable insights for designing advanced epoxy-based materials with multifunctional properties.

11.
Sci Rep ; 13(1): 15133, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704683

RESUMEN

High glucose-induced endothelial dysfunction is the early event that initiates diabetes-induced vascular disease. Here we employed Cryo Soft X-ray Tomography to obtain three-dimensional maps of high D-glucose-treated endothelial cells and their controls at nanometric spatial resolution. We then correlated ultrastructural differences with metabolic rewiring. While the total mitochondrial mass does not change, high D-glucose promotes mitochondrial fragmentation, as confirmed by the modulation of fission-fusion markers, and dysfunction, as demonstrated by the drop of membrane potential, the decreased oxygen consumption and the increased production of reactive oxygen species. The 3D ultrastructural analysis also indicates the accumulation of lipid droplets in cells cultured in high D-glucose. Indeed, because of the decrease of fatty acid ß-oxidation induced by high D-glucose concentration, triglycerides are esterified into fatty acids and then stored into lipid droplets. We propose that the increase of lipid droplets represents an adaptive mechanism to cope with the overload of glucose and associated oxidative stress and metabolic dysregulation.


Asunto(s)
Angiopatías Diabéticas , Enfermedades Metabólicas , Humanos , Células Endoteliales , Gotas Lipídicas , Mitocondrias , Glucosa
13.
Small Methods ; 7(11): e2300718, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37608445

RESUMEN

Manganese hexacyanoferrate is a promising cathode material for lithium and sodium ion batteries, however, it suffers of capacity fading during the cycling process. To access the structural and functional characteristics at the nanometer scale, fresh and cycled electrodes are extracted and investigated by transmission soft X-ray microscopy, which allows chemical characterization with spatial resolution from position-dependent x-ray spectra at the Mn L-, Fe L- and N K-edges. Furthermore, soft X-rays prove to show superior sensitivity toward Fe, compare to hard X-rays. Inhomogeneities within the samples are identified, increasing in the aged electrodes, more dramatically in the Li-ion system, which explains the poorer cycle life as Li-ion cathode material. Local spectra, revealing different oxidation states over the sample with strong correlation between the Fe L-edge, Mn L-edge, and N K-edge, imply a coupling between redox centers and an electron delocalization over the host framework.

14.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446022

RESUMEN

Ticagrelor is currently considered a first-line choice in dual antiplatelet therapy (DAPT) following revascularization of acute coronary syndrome (ACS). However, its use is correlated with an increased incidence of two side effects, dyspnea and bradyarrhythmias, whose molecular mechanisms have not yet been defined with certainty and, consequently, neither of the therapeutic decisions they imply. We report the case of a patient with acute myocardial infarction treated with ticagrelor and aspirin as oral antithrombotic therapy after primary percutaneous coronary intervention (PCI), manifesting in a significant bradyarrhythmic episode that required a switch of antiplatelet therapy. Starting from this case report, this article aims to gather the currently available evidence regarding the molecular mechanisms underlying these side effects and propose possible decision-making algorithms regarding their management in clinical practice.


Asunto(s)
Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Ticagrelor/efectos adversos , Inhibidores de Agregación Plaquetaria/efectos adversos , Intervención Coronaria Percutánea/efectos adversos , Aspirina/uso terapéutico , Infarto del Miocardio/terapia , Resultado del Tratamiento
15.
ACS Nano ; 17(15): 15189-15198, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37493644

RESUMEN

The Chirality Induced Spin Selectivity (CISS) effect describes the capability of chiral molecules to act as spin filters discriminating flowing electrons according to their spin state. Within molecular spintronics, efforts are focused on developing chiral-molecule-based technologies to control the injection and coherence of spin-polarized currents. Herein, for this purpose, we study spin selectivity properties of a monolayer of a thioalkyl derivative of a thia-bridged triarylamine hetero[4]helicene chemisorbed on a gold surface. A stacked device assembled by embedding a monolayer of these molecules between ferromagnetic and diamagnetic electrodes exhibits asymmetric magnetoresistance with inversion of the signal according to the handedness of molecules, in line with the presence of the CISS effect. In addition, magnetically conductive atomic force microscopy reveals efficient electron spin filtering even at unusually low potentials. Our results demonstrate that thia[4]heterohelicenes represent key candidates for the development of chiral spintronic devices.

16.
Materials (Basel) ; 16(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37445182

RESUMEN

The increased use of bioplastics in the market has led to their presence in municipal solid waste streams alongside traditional fossil-based polymers, particularly low-density polyethylene (LDPE), which bioplastics often end up mixed with. This study aimed to assess the impact of cellulose acetate plasticized with triacetin (CAT) on the mechanical recycling of LDPE. LDPE-CAT blends with varying CAT content (0%, 1%, 5%, 7.5%, and 10% by weight) were prepared by melt extrusion and analyzed using scanning electron microscopy, Fourier-transform infrared spectroscopy, thermal analysis (thermogravimetric and differential scanning calorimetry), dynamic rheological measurements, and tensile tests. The results indicate that the presence of CAT does not significantly affect the chemical, thermal, and rheological properties of LDPE, and the addition of CAT at different levels does not promote LDPE degradation under typical processing conditions. However, the addition of CAT negatively impacts the processability and mechanical behavior of LDPE, resulting in the reduced quality of the recycled material. Thus, the presence of cellulose-based bioplastics in LDPE recycling streams should be avoided, and a specific sorting stream for bioplastics should be established.

17.
J Extracell Vesicles ; 12(6): e12333, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37328936

RESUMEN

Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.


Asunto(s)
Vesículas Extracelulares , Cinesinas , Cinesinas/metabolismo , Chaperonina con TCP-1/metabolismo , Vesículas Extracelulares/metabolismo , Metabolismo de los Lípidos , Lípidos
18.
Polymers (Basel) ; 15(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242872

RESUMEN

In this study, a tetrafunctional epoxy resin was loaded with 5 wt% of three different types of polyhedral oligomeric silsesquioxane (POSS) compounds, namely, DodecaPhenyl POSS (DPHPOSS), Epoxycyclohexyl POSS (ECPOSS), Glycidyl POSS (GPOSS), and 0.5 wt% of multi-walled carbon nanotubes (CNTs) in order to formulate multifunctional structural nanocomposites tailored for aeronautic and aerospace applications. This work aims to demonstrate how the skillful combination of desired properties, such as good electrical, flame-retardant, mechanical, and thermal properties, is obtainable thanks to the advantages connected with nanoscale incorporations of nanosized CNTs with POSS. The special hydrogen bonding-based intermolecular interactions between the nanofillers have proved to be strategic in imparting multifunctionality to the nanohybrids. All multifunctional formulations are characterized by a Tg centered at values close to 260 °C, fully satisfying structural requirements. Infrared spectroscopy and thermal analysis confirm the presence of a cross-linked structure characterized by a high curing degree of up to 94% and high thermal stability. Tunneling atomic force microscopy (TUNA) allows to detect the map of the electrical pathways at the nanoscale of the multifunctional samples, highlighting a good dispersion of the carbon nanotubes within the epoxy resin. The combined action of POSS with CNTs has allowed to obtain the highest values of self-healing efficiency if compared to those measured for samples containing only POSS in the absence of CNTs.

19.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239904

RESUMEN

Osteosarcoma (OS) is the most common primary malignant bone tumor and its etiology has recently been associated with osteogenic differentiation dysfunctions. OS cells keep a capacity for uncontrolled proliferation showing a phenotype similar to undifferentiated osteoprogenitors with abnormal biomineralization. Within this context, both conventional and X-ray synchrotron-based techniques have been exploited to deeply characterize the genesis and evolution of mineral depositions in a human OS cell line (SaOS-2) exposed to an osteogenic cocktail for 4 and 10 days. A partial restoration of the physiological biomineralization, culminating with the formation of hydroxyapatite, was observed at 10 days after treatment together with a mitochondria-driven mechanism for calcium transportation within the cell. Interestingly, during differentiation, mitochondria showed a change in morphology from elongated to rounded, indicating a metabolic reprogramming of OS cells possibly linked to an increase in glycolysis contribution to energy metabolism. These findings add a dowel to the genesis of OS giving new insights on the development of therapeutic strategies able to restore the physiological mineralization in OS cells.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Osteogénesis , Biomineralización , Línea Celular Tumoral , Osteosarcoma/metabolismo , Diferenciación Celular/fisiología , Mitocondrias/metabolismo , Neoplasias Óseas/metabolismo , Proliferación Celular/fisiología
20.
Chem Sci ; 14(7): 1641-1665, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36819848

RESUMEN

Synchrotron radiation based techniques are powerful tools for battery research and allow probing a wide range of length scales, with different depth sensitivities and spatial/temporal resolutions. Operando experiments enable characterization during functioning of the cell and are thus a precious tool to elucidate the reaction mechanisms taking place. In this perspective, the current state of the art for the most relevant techniques (scattering, spectroscopy, and imaging) is discussed together with the bottlenecks to address, either specific for application in the battery field or more generic. The former includes the improvement of cell designs, multi-modal characterization and development of protocols for automated or at least semi-automated data analysis to quickly process the huge amount of data resulting from operando experiments. Given the recent evolution in these areas, accelerated progress is expected in the years to come, which should in turn foster battery performance improvements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA