Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 31(32): 11728-32, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832202

RESUMEN

The study of human brain electrophysiology has extended beyond traditional frequency ranges identified by the classical EEG rhythms, encompassing both higher and lower frequencies. Changes in high-gamma-band (>70 Hz) power have been identified as markers of local cortical activity. Fluctuations at infra-slow (<0.1 Hz) frequencies have been associated with functionally significant cortical networks elucidated using fMRI studies. In this study, we examined infra-slow changes in band-limited power across a range of frequencies (1-120 Hz) in the default mode network (DMN). Measuring the coherence in band-limited power fluctuations between spatially separated electrodes makes it possible to detect small, spatially extended, and temporally coherent fluctuating components in the presence of much larger incoherent fluctuations. We show that the default network is characterized by significant high-gamma-band (65-110 Hz) coherence at infra-slow (<0.1 Hz) frequencies. This coherence occurs over a narrow frequency range, centered at 0.015 Hz, commensurate with the frequency of BOLD signal fluctuations seen by fMRI, suggesting that quasi-periodic, infra-slow changes in local cortical activity form the neurophysiological basis for this network.


Asunto(s)
Electroencefalografía/métodos , Giro del Cíngulo/fisiología , Red Nerviosa/fisiología , Periodicidad , Corteza Prefrontal/fisiología , Adolescente , Adulto , Mapeo Encefálico/métodos , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
2.
PLoS Comput Biol ; 5(12): e1000609, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20019800

RESUMEN

Recent studies have identified broadband phenomena in the electric potentials produced by the brain. We report the finding of power-law scaling in these signals using subdural electrocorticographic recordings from the surface of human cortex. The power spectral density (PSD) of the electric potential has the power-law form P(f ) approximately Af(-chi) from 80 to 500 Hz. This scaling index, chi = 4.0+/-0.1, is conserved across subjects, area in the cortex, and local neural activity levels. The shape of the PSD does not change with increases in local cortical activity, but the amplitude, A, increases. We observe a "knee" in the spectra at f(0) approximately 75 Hz, implying the existence of a characteristic time scale tau = (2pif(0))(-1) approximately 2 - 4ms. Below f(0), we explore two-power-law forms of the PSD, and demonstrate that there are activity-related fluctuations in the amplitude of a power-law process lying beneath the alpha/beta rhythms. Finally, we illustrate through simulation how, small-scale, simplified neuronal models could lead to these power-law observations. This suggests a new paradigm of non-oscillatory "asynchronous," scale-free, changes in cortical potentials, corresponding to changes in mean population-averaged firing rate, to complement the prevalent "synchronous" rhythm-based paradigm.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Biología Computacional/métodos , Electroencefalografía/métodos , Potenciales de Acción/fisiología , Algoritmos , Simulación por Computador , Epilepsia/fisiopatología , Humanos , Distribución de Poisson
3.
J Comput Neurosci ; 27(2): 277-90, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19353260

RESUMEN

Neuronal responses are often characterized by the firing rate as a function of the stimulus mean, or the f-I curve. We introduce a novel classification of neurons into Types A, B-, and B+ according to how f-I curves are modulated by input fluctuations. In Type A neurons, the f-I curves display little sensitivity to input fluctuations when the mean current is large. In contrast, Type B neurons display sensitivity to fluctuations throughout the entire range of input means. Type B- neurons do not fire repetitively for any constant input, whereas Type B+ neurons do. We show that Type B+ behavior results from a separation of time scales between a slow and fast variable. A voltage-dependent time constant for the recovery variable can facilitate sensitivity to input fluctuations. Type B+ firing rates can be approximated using a simple "energy barrier" model.


Asunto(s)
Sistema Nervioso Central/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Algoritmos , Animales , Membrana Celular/fisiología , Simulación por Computador , Humanos , Potenciales de la Membrana/fisiología , Factores de Tiempo
4.
IEEE Trans Biomed Eng ; 55(5): 1634-7, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18440909

RESUMEN

Electrocorticographic spectral changes during movement show a behavioral inflection in the classic gamma band (30-70 Hz). We quantify this inflection and demonstrate that it limits classification accuracy. We call for the designation of a functionally defined band above it, which we denote the chi-band.


Asunto(s)
Mapeo Encefálico/métodos , Electroencefalografía/métodos , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Procesamiento de Señales Asistido por Computador , Análisis y Desempeño de Tareas , Humanos
5.
Phys Rev Lett ; 90(17): 175502, 2003 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-12786080

RESUMEN

We have used coherent, resonant, x-ray magnetic speckle patterns to measure the statistical evolution of the microscopic magnetic domains in perpendicular magnetic films as a function of the applied magnetic field. Our work constitutes the first direct, ensemble-averaged study of microscopic magnetic return-point memory, and demonstrates the profound impact of interfacial roughness on this phenomenon. At low fields, the microscopic magnetic domains forget their past history with an exponential field dependence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA