Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 25(13): 136004, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23462552

RESUMEN

The title compounds have dominant ferromagnetic exchange interactions within one-dimensional (1D) half-twist ladders of s = 1/2 Cu(2+) ions and antiferromagnetic (AFM) interactions between ladders, leading to ordered 3D phases at temperatures below 20 K. Here we show that a microscopic 1D model of the paramagnetic (PM) phase combined with a phenomenological model based on sublattice magnetization describes the observed temperature and field dependent magnetism. The model identifies AFM, spin-flop and PM phases whose boundaries have sharp features in the experimental magnetization M(T,H) and specific heat C(P)(T,H). Exact diagonalization of the 1D model, possible for 24 spins due to special structural features of half-twist ladders, yields the magnetization and spin susceptibility of the PM phase. AFM interactions between ladders are included at the mean-field level using the field, H(AF), obtained from modelling the ordered phases. Isotropic exchange J1 =- 135 K and g-tensor g = 2.1 within ladders, plus exchange and anisotropy fields H(AF) and H(A), describe the ordered phases and are almost quantitative for the PM phase.

2.
Phys Rev Lett ; 108(18): 187206, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22681114

RESUMEN

A quantum magnet, LiCuSbO4, with chains of edge-sharing spin-1/2 CuO6 octahedra is reported. While short-range order is observed for T<10 K, no zero-field phase transition or spin freezing occurs down to 100 mK. Specific heat indicates a distinct high-field phase near the 12 T saturation field. Neutron scattering shows incommensurate spin correlations with q=(0.47±0.01)π/a and places an upper limit of 70 µeV on any spin gap. Exact diagonalization of 16-spin easy-plane spin-1/2 chains with competing ferro- and antiferromagnetic interactions (J1=-75 K, J2=34 K) accounts for the T>2 K data.

3.
J Phys Condens Matter ; 24(16): 166001, 2012 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-22446062

RESUMEN

The magnetic properties of polycrystalline samples of Ba(3)Cu(3)In(4)O(12) (In-334) and Ba(3)Cu(3)Sc(4)O(12) (Sc-334) are reported. Both 334 phases have a structure derived from perovskite, with CuO(4) squares interconnected to form half-twist ladders along the c-axis. The Cu-O-Cu angles, ~90°, and the positive Weiss temperatures indicate the presence of significant ferromagnetic (FM) interactions along the Cu ladders. At low temperatures, T < 20 K, sharp transitions in the magnetic susceptibility and heat capacity measurements indicate three-dimensional (3D) antiferromagnetic (AFM) ordering at T(N). T(N) is suppressed on application of a field and a complex magnetic phase diagram with three distinct magnetic regimes below the upper critical field can be inferred from our measurements. The magnetic interactions are discussed in relation to a modified spin-1/2 FM-AFM model and the 334 half-twist ladder is compared to other two-rung ladder spin-1/2 systems.

4.
J Phys Chem A ; 112(31): 7271-9, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18636692

RESUMEN

The photoluminescence (PL) and electroluminescence (EL) of thin films of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) are remarkably different. Similar PL and EL are instead observed in films of the closely related donors tri- p-tolylamine (TTA) and N, N'-diphenyl- N, N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD). Such films show a wide range of hole transport that depends on the morphology and on external parameters such as temperature and electric field. Restricted configuration-interaction calculations performed on TTA, TAPC, TPD, and radical ions of TTA indicate that the unusual EL of TAPC films is due to direct recombination from a low-lying charge-transfer (CT) state. The CT state is strongly stabilized by electrostatic interactions with the polar environment. Theory confirms that TAPC can be considered a dimer of TTA. The charge distributions of TTA (+) and TTA (-) indicate charge localization in the anion that rationalizes low electron mobility as well as a strong charge-induced-dipole stabilization of the CT state.

5.
J Phys Chem B ; 110(38): 18748-57, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16986864

RESUMEN

The quasi-one-dimensional electronic structure of organic charge-transfer (CT) salts rationalizes Peierls transitions in mixed or segregated stacks of pi-electron donors (D) and acceptors (A). A microscopic Peierls-Hubbard model, HCT, is presented for CT salts with mixed stacks (Drho+Arho-)n and ionicity rho > 0.7. Dimerization opens a Peierls gap that, due to electron correlation, is the singlet-triplet gap, EST. In contrast to spin-Peierls systems, such as Heisenberg spin chains with rho = 1 and TSP < 20 K, Peierls transitions in CT salts with rho < 1 occur at higher TP and involve both spin and charge degrees of freedom. Linear electron-phonon coupling and an adiabatic approximation for a harmonic lattice are used to model the dimerization amplitude deltaT for T < TP, the magnetic (spin) susceptibility chiT, and the relative infrared intensity of totally symmetric molecular modes. Exact thermodynamics of HCT for stacks up to N = 12 sites are applied to two CT salts with TP approximately 50 and 120 K whose magnetism and infrared have not been modeled previously and to CT salts with inaccessibly high TP > 350 K whose description has been difficult. Ionic CT salts are correlated Peierls systems with a degenerate ground state (GS) at T = 0 whose elementary excitations are spin solitons, while dimerized ion-radical stacks that support triplet-spin excitons have nondegenerate GS. In less ionic CT salts, modulation of HCT parameters on cooling or under pressure leads to Peierls and/or neutral-ionic transitions of the GS, without appreciable thermal population of excited states. Correlations change the gap equation that relates EST at T = 0 to TP compared to free electrons, and size convergence is fast in stacks with large delta0 and high TP.

6.
Phys Rev Lett ; 94(13): 137403, 2005 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-15904034

RESUMEN

Double-modulation (DM) photoluminescence (PL) detected magnetic resonance (PLDMR) measurements on poly(2-methoxy-5-(2(')-ethyl)-hexoxy-1,4-phenylene vinylene) are described. In these measurements, the laser excitation power is modulated at 1

7.
J Chem Phys ; 122(2): 024710, 2005 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-15638617

RESUMEN

The unusual electronic, vibrational, and structural properties of the title compound are associated with the polar donor D=2-chloro-5-methyl-p-phenylenediamine, which is twofold disordered in single crystals. Its 3 D dipole generates random site energies with standard deviation sigma=0.35 eV that significantly alter the standard description of charge-transfer (CT) salts with nonpolar donors and acceptors. The average structure at 298 and 150 K is centrosymmetric, space group P1, and consistent with increasing degree of CT (or ionicity rho) on cooling. Vibrational spectra indicate that rho increases from approximately 0.3 at 400 K to approximately 0.6 at 80 K, with coincident Raman and infrared (IR) molecular modes in contrast with the centrosymmetric structure. Dipolar disorder is modeled by adding random site energies to Peierls-Hubbard models of CT salts, and sigma=0.35 eV is shown to suppress the Peierls instability for typical bandwidth and lattice stiffness, in agreement with the structural data. Disorder also breaks inversion symmetry and rationalizes coincident Raman and IR modes. The combination of site energies xp and the dipole operator P for systems with periodic boundary conditions leads at molecule p to (partial differentialP/ partial differentialxp)2 for the IR intensity polarized along the DA stack. The ensemble average of (partial differentialP/ partial differentialxp)2 for sigma=0.35 eV as a function of the ground-state ionicity rho accounts for the intensity variations of totally symmetric molecular modes of D and A, either on cooling at ambient pressure or on squeezing at ambient temperature.

8.
Phys Rev Lett ; 89(2): 027402, 2002 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12097016

RESUMEN

We present exact diagonalization results on a modified Peierls-Hubbard model for the neutral-ionic phase transition. The ground state potential energy surface and the infrared intensity of the Peierls mode point to a strong, nonlinear electron-phonon coupling, with effects that are dominated by the proximity to the electronic instability rather than by electronic correlations. The huge infrared intensity of the Peierls mode at the ferroelectric transition is related to the temperature dependence of the dielectric constant of mixed-stack organic crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA