Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; : e202400787, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261288

RESUMEN

Metal halide perovskites, both lead-based and lead-free variants, have emerged as highly versatile materials with widespread applications across various fields, including photovoltaics, optoelectronics, and photocatalysis. This review provides a succinct overview of the recent advancements in the utilization of lead and lead-free halide perovskites specifically in photocatalysis. We explore the diverse range of photocatalytic reactions enabled by metal halide perovskites, including organic transformations, carbon dioxide reduction, and pollutant degradation. We highlight key developments, mechanistic insights, and challenges in the field, offering our perspectives on the future research directions and potential applications. By summarizing recent findings from the literature, this review aims to provide a timely resource for researchers interested in harnessing the full potential of metal halide perovskites for sustainable and efficient photocatalytic processes.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39268641

RESUMEN

Dew harvesting, minimally influenced by climate and geographical locations, is an ideal method for addressing water shortage problems. Superhydrophilic surfaces, characterized by their highest affinity for water, are particularly attractive for this purpose as they can attract more water molecules via condensation. However, a significant challenge arises from the high surface capillary force that impedes water from sliding down and being effectively collected. The resulting water film on the superhydrophilic surface tends to stay around the edge of the water collection surface, leading to evaporation loss and reduced collection efficacy. To overcome this problem, triangular patterns with low surface adhesion to water were introduced at the edge of superhydrophilic surfaces. This modification, achieved through a wet chemical method and masked oxygen plasma treatment, has significantly improved the efficiency of water collection. Results indicate that the hybrid surface reduced the time for the first water droplet to slide down by half and increased water collection efficiency by 78% compared to uniform superhydrophilic surfaces and by 536% compared to uniform superhydrophobic surfaces under a relative humidity of 55% with a temperature difference of 15 °C. The underlying principles were elucidated through computational simulations, and the mechanisms driving the enhancement in collection efficiency were explained.

3.
Adv Sci (Weinh) ; 11(29): e2309714, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38807302

RESUMEN

Lead-free metal halide perovskites can potentially be air- and water-stable photocatalysts for organic synthesis, but there are limited studies on them for this application. Separately, machine learning (ML), a critical subfield of artificial intelligence, has played a pivotal role in identifying correlations and formulating predictions based on extensive datasets. Herein, an iterative workflow by incorporating high-throughput experimental data with ML to discover new lead-free metal halide perovskite photocatalysts for the aerobic oxidation of styrene is described. Through six rounds of ML optimization guided by SHapley Additive exPlanations (SHAP) analysis, BA2CsAg0.95Na0.05BiBr7 as a photocatalyst that afforded an 80% yield of benzoic acid under the standard conditions is identified, which is a 13-fold improvement compared to the 6% with when using Cs2AgBiBr6 as the initial photocatalyst benchmark that is started. BA2CsAg0.95Na0.05BiBr7 can tolerate various functional groups with 22 styrene derivatives, highlighting the generality of the photocatalytic properties demonstrated. Radical scavenging studies and density functional theory calculations revealed that the formation of the reactive oxygen species superoxide and singlet oxygen in the presence of BA2CsAg0.95Na0.05BiBr7 are critical for photocatalysis.

4.
STAR Protoc ; 5(1): 102918, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412103

RESUMEN

Upcycling plastics presents an opportunity not only to reduce plastic waste, but also to provide an alternative carbon source to fossil fuels. Herein, we present a protocol to upcycle plastics with resin codes 2-7 using a commercially available base-metal photocatalyst. We first conducted batch reactions, followed by a continuous, segmented flow system for gram-scale upcycling into value-added platform chemicals. This protocol, employing tandem carbon-hydrogen bond oxidation/carbon-carbon bond cleavage reactions, can be useful for photocatalytically transforming plastics at ambient conditions. For complete details on the use and execution of this protocol, please refer to Li et al. (2023).1.


Asunto(s)
Carbono , Enlace de Hidrógeno
5.
Macromol Rapid Commun ; 44(15): e2300133, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37227035

RESUMEN

The development of catalyst-free ester-based covalent adaptable networks (CANs) provides a new approach to achieve milder reaction conditions to reprocess thermoset resins. Despite recent advances, however, accelerating network rearrangements requires the introduction of hydroxyl groups into the network. In this study, disulfide bonds are introduced into the CANs to add new kinetically facile pathways to accelerate network rearrangement. Kinetic experiments using small molecule models of the CANs show that the presence of the disulfide bonds can accelerate transesterification. These insights are applied to synthesize new kinds of poly(ß-hydrazide disulfide esters) (PSHEs) using thioctic acyl hydrazine (TAH) as a precursor for ring-opening polymerization with the hydroxyl-free multifunctional acrylates. The PSHE CANs have lower relaxation times (505-652 s) than the polymer containing only ß-hydrazide esters (2903 s). The ring-opening polymerization of TAH improves the crosslinking density, heating resistance deformation temperature, and UV shielding performance of the PSHEs. Thus, this work provides a practical strategy to reduce the reprocessing temperatures of CANs.


Asunto(s)
Disulfuros , Ésteres , Ésteres/química , Disulfuros/química , Acrilatos , Hidrazinas
6.
ACS Omega ; 8(2): 1851-1863, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36687105

RESUMEN

Switching to renewable, carbon-neutral sources of energy is urgent and critical for climate change mitigation. Despite how hydrogen production by electrolyzing water can enable renewable energy storage, current technologies unfortunately require rare and expensive platinum group metal electrocatalysts, which limit their economic viability. Transition metal dichalcogenides (TMDs) are low-cost, earth-abundant materials that possess the potential to replace platinum as the hydrogen evolution catalyst for water electrolysis, but so far, pristine TMDs are plagued by poor catalytic performances. Defect engineering is an attractive approach to enhance the catalytic efficiency of TMDs and is not subjected to the limitations of other approaches like phase engineering and surface structure engineering. In this minireview, we discuss the recent progress made in defect-engineered TMDs as efficient, robust, and low-cost catalysts for water splitting. The roles of chalcogen atomic defects in engineering TMDs for improvements to the hydrogen evolution reaction (HER) are summarized. Finally, we highlight our perspectives on the challenges and opportunities of defect engineering in TMDs for electrocatalytic water splitting. We hope to provide inspirations for designing the state-of-the-art catalysts for future breakthroughs in the electrocatalytic HER.

7.
Adv Mater ; 34(25): e2100843, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34240472

RESUMEN

Plastics are now indispensable in daily lives. However, the pollution from plastics is also increasingly becoming a serious environmental issue. Recent years have seen more sustainable approaches and technologies, commonly known as upcycling, to transform plastics into value-added materials and chemical feedstocks. In this review, the latest research on upcycling is presented, with a greater focus on the use of renewable energy as well as the more selective methods to repurpose synthetic polymers. First, thermal upcycling approaches are briefly introduced, including the redeployment of plastics for construction uses, 3D printing precursors, and lightweight materials. Then, some of the latest novel strategies to deconstruct condensation polymers to monomers for repolymerization or introduce vulnerable linkers to make the plastics more degradable are discussed. Subsequently, the review will explore the breakthroughs in plastics upcycling by heterogeneous and homogeneous photocatalysis, as well as electrocatalysis, which transform plastics into more versatile fine chemicals and materials while simultaneously mitigating global climate change. In addition, some of the biotechnological advances in the discovery and engineering of microbes that can decompose plastics are also presented. Finally, the current challenges and outlook for future plastics upcycling are discussed to stimulate global cooperation in this field.


Asunto(s)
Plásticos , Polímeros , Biotecnología
8.
ChemSusChem ; 14(19): 4152-4166, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34048150

RESUMEN

The management of plastics waste is one of the most urgent and significant global problems now. Historically, waste plastics have been predominantly discarded, mechanically recycled, or incinerated for energy production. However, these approaches typically relied on thermal processes like conventional pyrolysis, which are energy-intensive and unsustainable. In this Minireview, some of the latest advances and future trends in the chemical upcycling of waste plastics by photocatalytic, electrolytic, and microwave-assisted pyrolysis processes are discussed as more environmentally friendly alternatives to conventional thermal reactions. We highlight how the transformation of different types of plastics waste by exploiting alternative energy sources can generate value-added products such as fuels (H2 and other carbon-containing small molecules), chemical feedstocks, and newly functionalized polymers, which can contribute to a more sustainable and circular economy.

9.
Commun Chem ; 3(1): 113, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36703406

RESUMEN

Bis(arylimino)acenaphthene (Ar-BIAN) ligands have been recognized as robust scaffolds for metal complexes since the 1990 s and most of their coordination chemistry was developed with transition metals. Notably, there have been relatively few reports on complexes comprising main group elements, especially those capitalizing on the redox non-innocence of Ar-BIAN ligands supporting p-block elements. Here we present an overview of synthetic approaches to Ar-BIAN ligands and their p-block complexes using conventional solution-based methodologies and environmentally-benign mechanochemical routes. This is followed by a discussion on their catalytic properties, including comparisons to transition metal counterparts, as well as key structural and electronic properties of p-block Ar-BIAN complexes.

10.
Adv Sci (Weinh) ; 6(24): 1902020, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871870

RESUMEN

Significant efforts are devoted to developing artificial photosynthetic systems to produce fuels and chemicals in order to cope with the exacerbating energy and environmental crises in the world now. Nonetheless, the large-scale reactions that are the focus of the artificial photosynthesis community, such as water splitting, are thus far not economically viable, owing to the existing, cheaper alternatives to the gaseous hydrogen and oxygen products. As a potential substitute for water oxidation, here, a unique, visible light-driven oxygenation of carbon-carbon bonds for the selective transformation of 32 unactivated alcohols, mediated by a vanadium photocatalyst under ambient, atmospheric conditions is presented. Furthermore, since the initial alcohol products remain as substrates, an unprecedented photodriven cascade carbon-carbon bond cleavage of macromolecules can be performed. Accordingly, hydroxyl-terminated polymers such as polyethylene glycol, its block co-polymer with polycaprolactone, and even the non-biodegradable polyethylene can be repurposed into fuels and chemical feedstocks, such as formic acid and methyl formate. Thus, a distinctive approach is presented to integrate the benefits of photoredox catalysis into environmental remediation and artificial photosynthesis.

15.
iScience ; 16: 312-325, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31203187

RESUMEN

Mechanochemistry is a green, solid-state, re-emerging synthetic technique that can rapidly form complex molecules and materials without exogenous heat or solvent(s). Herein, we report the application of solvent-free mechanochemical ball milling for the synthesis of metal halide perovskites, to overcome problems with solution-based syntheses. We prepared phase-pure, air-sensitive CsSnX3 (X = I, Br, Cl) and its mixed halide perovskites by mechanochemistry for the first time by reactions between cesium and tin(II) halides. Notably, we report the sole examples where metastable, high-temperature phases like cubic CsSnCl3, cubic CsPbI3, and trigonal FAPbI3 were accessible at ambient temperatures and pressures without post-synthetic processing. The perovskites can be prepared up to "kilogram scales." Lead-free, all-inorganic photodetector devices were fabricated using the mechanosynthesized CsSnBr1.5Cl1.5 under solvent-free conditions and showed 10-fold differences between on-off currents. We highlight an essentially solvent-free, general approach to synthesize metastable compounds and fabricate photodetectors from commercially available precursors.

16.
Inorg Chem ; 58(2): 1469-1480, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30608673

RESUMEN

Hydrogen (H2) is a clean fuel that can potentially be a future solution for the storage of intermittent renewable energy. However, current H2 production is mainly dominated by the energy intensive steam reforming reaction, which consumes a fossil fuel, methane, and emits copious amounts of carbon dioxide as one of the byproducts. To address this challenge, we report a molecular catalyst that produces H2 from aqueous solutions, is composed of affordable, earth-abundant elements such as nickel, and has been incorporated into a system driven by visible light. Under optimized conditions, we observe a turnover number of 3880, among the best for photocatalytic H2 evolution with nickel complexes from water-methanol solutions. Through nanosecond transient absorption, electron paramagnetic resonance, and UV-vis spectroscopic measurements, and supported by density functional theory calculations, we report a detailed study of this photocatalytic H2 evolution cycle. We demonstrate that a one-electron reduced, predominantly ligand-centered, reactive Ni intermediate can be accessed under visible light irradiation using triethylamine as the sacrificial electron donor and reductive quencher of the initial photosensitizer excited state. In addition, the computational calculations suggest that the second coordination sphere ether arms can enhance the catalytic activity by promoting proton relay, similar to the mechanism among [FeFe] hydrogenases in nature. Our study can form the basis for future development of H2 evolution molecular catalysts that incorporate both ligand redox noninnocence and alternative second coordination sphere effects in artificial photosynthetic systems driven by visible light.

17.
Angew Chem Int Ed Engl ; 58(11): 3456-3460, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30629313

RESUMEN

Two-dimensional lead and tin halide perovskites were prepared by intercalating the long alkyl group 1-hexadecylammonium (HDA) between the inorganic layers. We observed visible-light absorption, narrow-band photoluminescence, and nanosecond photoexcited lifetimes in these perovskites. Owing to their hydrophobicity and stability even in humid air, we applied these perovskites in the decarboxylation and dehydrogenation of indoline-2-carboxylic acids. (HDA)2 PbI4 or (HDA)2 SnI4 were investigated as photoredox catalysts for these reactions, and quantitative conversion and high yields were observed with the former.

18.
Chem Sci ; 9(16): 3992-4002, 2018 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-29862004

RESUMEN

The photochemical oxidation of a (TAML)FeIII complex 1 using visible light generated Ru(bpy)33+ produces valence tautomers (TAML)FeIV (1+ ) and (TAML˙+)FeIII (1-TAML˙+ ), depending on the exogenous anions. The presence of labile Cl- or Br- results in a ligand-based oxidation and stabilisation of a radical-cationic (TAML˙+)FeIII complex, which subsequently leads to unprecedented C-H activation followed by nucleophilic substitution on the TAML aryl ring. In contrast, exogenous cyanide culminates in metal-based oxidation, yielding the first example of a crystallographically characterised S = 1 [(TAML)FeIV(CN)2]2- species. This is a rare report of an anion-dependent valence tautomerisation in photochemically accessed high valent (TAML)Fe systems with potential applications in the oxidation of pollutants, hydrocarbons, and water. Furthermore, the nucleophilic aromatic halogenation reaction mediated by (TAML˙+)FeIII represents a novel domain for high-valent metal reactivity and highlights the possible intramolecular ligand or substrate modification pathways under highly oxidising conditions. Our findings therefore shine light on high-valent metal oxidants based on TAMLs and other potential non-innocent ligands and open new avenues for oxidation catalyst design.

19.
Chem Commun (Camb) ; 54(50): 6554-6572, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29737986

RESUMEN

Our society's current energy demands are largely met by the exploitation of fossil fuels, which are unsustainable and environmentally harmful resources. However, Nature has provided us with a clean and virtually limitless alternative in the form of solar energy. This abundant resource is utilized constantly by photosynthetic organisms, which has in turn motivated decades of research in our quest to create artificial counterparts of comparable scales. In this feature article, we will highlight some of the recent novel approaches in the field of artificial photosynthesis (AP), which we define by a more general term as a process that stores energy overall by generating fuels and chemicals using light. We will particularly emphasize on the potential of a highly modular plug-and-play concept that we hope will persuade the community to explore a more inclusive variety of multielectron redox catalysis to complement the proton reduction and water oxidation half-reactions in traditional solar water splitting systems. We discuss some of the latest developments in the vital functions of light harvesting, charge separation, and multielectron reductive and oxidative catalysis, as well as their optimization, to achieve the ultimate goal of storing sunlight in chemical bonds. Specific attention is dedicated to the use of earth-abundant elements and molecular catalysts that offer greater product selectivity and more intricate control over the reactivity than heterogeneous systems. In this context, we showcase our team's contributions in presenting a unique oxidative carbon-carbon bond cleavage reaction in aliphatic alcohols and biomass model compounds, under ambient atmospheric conditions, facilitated by vanadium photocatalysts. We offer this discovery as a promising alternative to water oxidation in an integrated AP system, which would concurrently generate both solar fuels and valuable solar chemicals.

20.
ACS Nano ; 12(6): 5903-5912, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29775278

RESUMEN

Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA