Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 280(Pt 2): 135781, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39304046

RESUMEN

Pesticides are vital for ensuring crop protection and stable yields, but their low efficiency and eco-unfriendly carriers raise environmental concerns. In this study, abamectin nanopesticides were designed and fabricated using natural polysaccharides [gum arabic (GA)] and a co-stabiliser via flash nanoprecipitation (FNP) method to reduce the size of nanopesticides and enhance their foliar affinity and deposition. Various co-stabilisers were innovatively introduced into the FNP process; the synergy between GA and the co-stabiliser significantly reduced the particle size (111.5 nm), narrowed the size distribution (polydispersity index = 0.078), and enhanced the stability and release performance of the nanopesticides. Importantly, the downsized nanopesticides effectively improved retention on leaf surfaces, reducing pesticide loss. In addition, because of the excellent control capability of the FNP method, the particle size of the nanopesticides could be flexibly adjusted by modifying the flow-based process parameters. Nanopesticides with small sizes demonstrated good control efficacy against Tetranychus urticae, comparable to those of commercial emulsion in water formulations. This study provides an effective approach for enhancing the utilisation efficiency of pesticide droplets by reducing particle size to ensure sustainable agriculture.

2.
Nat Commun ; 14(1): 1116, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849499

RESUMEN

The excitonic insulator (EI) is a Bose-Einstein condensation (BEC) of excitons bound by electron-hole interaction in a solid, which could support high-temperature BEC transition. The material realization of EI has been challenged by the difficulty of distinguishing it from a conventional charge density wave (CDW) state. In the BEC limit, the preformed exciton gas phase is a hallmark to distinguish EI from conventional CDW, yet direct experimental evidence has been lacking. Here we report a distinct correlated phase beyond the 2×2 CDW ground state emerging in monolayer 1T-ZrTe2 and its investigation by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The results show novel band- and energy-dependent folding behavior in a two-step process, which is the signatures of an exciton gas phase prior to its condensation into the final CDW state. Our findings provide a versatile two-dimensional platform that allows tuning of the excitonic effect.

3.
Sci Bull (Beijing) ; 66(5): 433-440, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654180

RESUMEN

Electron-boson interaction is fundamental to a thorough understanding of various exotic properties emerging in many-body physics. In photoemission spectroscopy, photoelectron emission due to photon absorption would trigger diverse collective excitations in solids, including the emergence of phonons, magnons, electron-hole pairs, and plasmons, which naturally provides a reliable pathway to study electron-boson couplings. While fingerprints of electron-phonon/-magnon interactions in this state-of-the-art technique have been well investigated, much less is known about electron-plasmon coupling, and direct observation of the band renormalization solely due to electron-plasmon interactions is extremely challenging. Here by utilizing integrated oxide molecular-beam epitaxy and angle-resolved photoemission spectroscopy, we discover the long sought-after pure electron-plasmon coupling-induced low-lying plasmonic-polaron replica bands in epitaxial semimetallic SrIrO3 films, in which the characteristic low carrier concentration and narrow bandwidth combine to provide a unique platform where the electron-plasmon interaction can be investigated kinematically in photoemission spectroscopy. This finding enriches the forms of electron band normalization on collective modes in solids and demonstrates that, to obtain a complete understanding of the quasiparticle dynamics in 5d electron systems, the electron-plasmon interaction should be considered on equal footing with the acknowledged electron-electron interaction and spin-orbit coupling.

4.
J Phys Condens Matter ; 32(33): 333001, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32244235

RESUMEN

Although the 1T' phase is rare in the transition metal dichalcogenides (TMDCs) family, it has attracted rapid growing research interest due to the coexistence of superconductivity, unsaturated magneto-resistance, topological phases etc. Among them, the quantum spin Hall (QSH) state in monolayer 1T'-TMDCs is especially interesting because of its unique van der Waals crystal structure, bringing advantages in the fundamental research and application. For example, the van der Waals two-dimensional (2D) layer is vital in building novel functional vertical heterostructure. The monolayer 1T'-TMDCs has become one of the widely studied QSH insulator. In this review, we review the recent progress in fabrications of monolayer 1T'-TMDCs and evidence that establishes it as QSH insulator.

5.
Nanotechnology ; 31(16): 165704, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31891932

RESUMEN

Recently, Bi2O2Se was revealed as a promising two-dimensional (2D) semiconductor for next generation electronics, due to its moderate bandgap size, high electron mobility and pronounced ambient stability. Meanwhile, it has been predicted that high-quality Bi2O2Se-related heterostructures may possess exotic physical phenomena, such as piezoelectricity and topological superconductivity. Herein, we report the first successful heteroepitaxial growth of Bi2O2Se films on SrTiO3 substrates via pulsed laser deposition (PLD) method. Films obtained under optimal conditions show an epitaxial growth with the c axis perpendicular to the film surface and the a and b axes parallel to the substrate. The growth mode transition to three-dimensional (3D) island from quasi-2D layer of the heteroepitaxial Bi2O2Se films on SrTiO3 (001) substrates is observed as prolonging deposition time of films. The maximum value of electron mobility reaches 160 cm2 V-1 s-1 at room temperature in a 70 nm thick film. The thickness dependent mobility provides evidence that interface-scattering is likely to be the limiting factor for the relatively low electron mobility at low temperature, implying that the interface engineering as an effective method to tune the low temperature electron mobility. Our work suggests the epitaxial Bi2O2Se films grown by PLD are promising for both fundamental study and practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA