Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(12): 4474-4483, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35167637

RESUMEN

Smart windows that dynamically fine-tune the solar energy gain are promising candidates for alleviating the global energy crisis. However, current smart surfaces easily deteriorate when rain or frozen ice dwells on the surface structure, heavily hindering their applications. Here, we report an electric-powered dual-mode slippery lubricant-impregnated porous surface (DM-SLIPS) developed by integrating paraffin wax and laser-ablated polytetrafluoroethylene (LA-PTFE) along with a silver nanowire thin-film heater. Owing to its fast electrical response, DM-SLIPS can be switched to repel surface-dwelling liquids within 20 s by applying an ultra-low voltage of 6 V. Simultaneously, light irradiated on DM-SLIPS can be finely-tuned between a "lock mode" and "release mode" in response to the solidification/liquidation of paraffin. Owing to homogeneous Joule heating, the DM-SLIPS surface can remove surface-frozen ice within 4 min in situ. As a proof-of-concept, the temperature of an indoor object shielded with electric-actuated DM-SLIPS could be reversibly switched between 34 °C and 29 °C, realizing controllable solar energy input. In comparison with previously reported surfaces, the present water-repellent, ice-phobic and transparency-switchable DM-SLIPS can be more useful for thermal management in extreme climates.

2.
Langmuir ; 37(40): 11737-11749, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34597055

RESUMEN

Capillary forces of a shearing liquid bridge can significantly affect the friction and adhesion of interacting surfaces, but the underlying mechanisms remain unclear. We custom built a surface force apparatus (SFA, ±2 µN) equipped with in situ optical microscopy and performed normal and lateral force measurements on a reciprocating water bridge formed between two flat plates. A modified wedge method was developed to correct the unique force measurement errors caused by the changing bridge geometry and position. The results found (1) strong linear relations among the bridge shear displacement, the cosine difference between the left and right contact angles, and the lateral adhesion force and (2) the normal adhesion force increased monotonically up to 13% as the bridge geometry approached its axisymmetric state. Quasi-static force analyses based on a newly developed decahedral model showed good agreement with the experiments and improved accuracy compared with that of cylindrical or rectangular column models previously proposed in the literature. Although limited in certain aspects, this study may (1) prove helpful to the design and analysis of liquid bridge force experiments on platforms similar to the SFA used in this study and (2) help to bridge the gap between friction and liquid bridge physics in the literature.

3.
Langmuir ; 37(17): 5436-5444, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33899490

RESUMEN

Liquid directional self-transport on the functional surface plays an important role in both industrial and academic fields. Inspired by the natural cactus spine and pitcher plant, we have successfully designed a kind of geometry-gradient slippery surface (GGSS) based on aluminum alloy materials which could actively achieve directional self-movement and also antigravity self-movement of various liquid droplets by topography gradient. The mechanism of liquid directional self-transport was theoretically explored through the mechanical analysis of the triple contact line, which was mainly related to the competition between the driven force induced by Laplace pressure and the adhesive force induced by viscous resistance. The adhesive force between the droplet and the surface was quantitatively measured using a homemade experimental apparatus and the results showed that the lateral adhesive force on the GGSS is much smaller than that on the original surface. Additionally, a series of quantitative experiments were conducted to explore the influence of droplet volume and vertex angle on the transport distance and velocity. Finally, we achieved the antigravity self-transport of the droplet on the inclined GGSS to further verify the self-transport ability of the GGSS. We believe that the proposed GGSS with liquid directional self-transport ability in the present work would provide some potential opportunities in modern tribo-systems to optimize the lubricating qualities, especially the lubrication and friction at the extreme contact interface.

4.
J Cell Biochem ; 120(3): 4248-4254, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30294942

RESUMEN

BACKGROUND: Alcoholic liver disease (ALD) is one of the major cause of morbidity and mortality of clinical liver disease worldwide. Until today, although many general therapies are carried out and several molecular targets have been proposed to act as the potential therapeutic targets, more accurate molecular targets and more effective therapeutic methods remain needed. MATERIAL AND METHODS: In the study, we analyze the differential expression genes (DEGs) between the patients with ALD and healthy controls. Gene Ontology enrichment and KEGG signaling pathway analysis are performed to identify the function of DEGs. Some significant molecules are proposed to act as the potential therapeutic targets for ALD. RNA data of 15 ALD tissues and 7 normal tissues for RNA expression analysis were obtained. DEGs in ALD samples compared with normal tissues identified through the limma R package and subjected to network analysis. RESULTS: As a result, we obtained a total of 274 DEGs that mainly involved in biological processes related to the angiogenesis, stress reaction, synthesis, and metabolism of organic acids. Network analysis obtained several genes with high network degree and fold change. Some significant molecules are proposed to act as the potential therapeutic targets for ALD. CONCLUSIONS: Our research identified some new progression-related genes of alcohol liver diseases, which could be regarded as the new targets for the early diagnosis and therapeutic management in ALD.


Asunto(s)
Biología Computacional/métodos , Hepatopatías Alcohólicas/genética , ARN Mensajero/genética , Transcriptoma , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA