Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 12(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36557107

RESUMEN

Water-splitting electrodialysis (WSED) process using bipolar membranes (BPMs) is attracting attention as an eco-friendly and efficient electro-membrane process that can produce acids and bases from salt solutions. BPMs are a key component of the WSED process and should satisfy the requirements of high water-splitting capability, physicochemical stability, low membrane cost, etc. The water-splitting performance of BPMs can be determined by the catalytic materials introduced at the bipolar junction. Therefore, in this study, several kinds of iron metal compounds (i.e., Fe(OH)3, Fe(OH)3@Fe3O4, Fe(OH)2EDTA, and Fe3O4@ZIF-8) were prepared and the catalytic activities for water-splitting reactions in BPMs were systematically analyzed. In addition, the pore-filling method was applied to fabricate low-cost/high-performance BPMs, and the 50 µm-thick BPMs prepared on the basis of PE porous support showed several times superior toughness compared to Fumatech FBM membrane. Through various electrochemical analyses, it was proven that Fe(OH)2EDTA has the highest catalytic activity for water-splitting reactions and the best physical and electrochemical stabilities among the considered metal compounds. This is the result of stable complex formation between Fe and EDTA ligand, increase in hydrophilicity, and catalytic water-splitting reactions by weak acid and base groups included in EDTA as well as iron hydroxide. It was also confirmed that the hydrophilicity of the catalyst materials introduced to the bipolar junction plays a critical role in the water-splitting reactions of BPM.

2.
Membranes (Basel) ; 12(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35207117

RESUMEN

Ion-exchange membranes (IEMs) are a core component that greatly affects the performance of electrochemical energy conversion processes such as reverse electrodialysis (RED) and all-vanadium redox flow battery (VRFB). The IEMs used in electrochemical energy conversion processes require low mass transfer resistance, high permselectivity, excellent durability, and also need to be inexpensive to manufacture. Therefore, in this study, thin-reinforced anion-exchange membranes with excellent physical and chemical stabilities were developed by filling a polyethylene porous substrate with functional monomers, and through in situ polymerization and post-treatments. In particular, the thin-reinforced membranes were made to have a high ion-exchange capacity and a limited degree of swelling at the same time through a double cross-linking reaction. The prepared membranes were shown to possess both strong tensile strength (>120 MPa) and low electrical resistance (<1 Ohm cm2). As a result of applying them to RED and VRFB, the performances were shown to be superior to those of the commercial membrane (AMX, Astom Corp., Japan) in the optimal composition. In addition, the prepared membranes were found to have high oxidation stability, enough for practical applications.

3.
Membranes (Basel) ; 11(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34832096

RESUMEN

In this work, we developed pore-filled ion-exchange membranes (PFIEMs) fabricated for the application to an all-vanadium redox flow battery (VRFB) by filling a hydrocarbon-based ionomer containing a fluorine moiety into the pores of a porous polyethylene (PE) substrate having excellent physical and chemical stabilities. The prepared PFIEMs were shown to possess superior tensile strength (i.e., 136.6 MPa for anion-exchange membrane; 129.9 MPa for cation-exchange membrane) and lower electrical resistance compared with commercial membranes by employing a thin porous PE substrate as a reinforcing material. In addition, by introducing a fluorine moiety into the filling ionomer along with the use of the porous PE substrate, the oxidation stability of the PFIEMs could be greatly improved, and the permeability of vanadium ions could also be significantly reduced. As a result of the evaluation of the charge-discharge performance in the VRFB, it was revealed that the higher the fluorine content in the PFIEMs was, the higher the current efficiency was. Moreover, the voltage efficiency of the PFIEMs was shown to be higher than those of the commercial membranes due to the lower electrical resistance. Consequently, both of the pore-filled anion- and cation-exchange membranes showed superior charge-discharge performances in the VRFB compared with those of hydrocarbon-based commercial membranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA