Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Energy Fuels ; 34(11): 14688-14707, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33250570

RESUMEN

This work (and the companion paper, Part II) presents new experimental data for the combustion of n-C3-C6 alcohols (n-propanol, n-butanol, n-pentanol, n-hexanol) and a lumped kinetic model to describe their pyrolysis and oxidation. The kinetic subsets for alcohol pyrolysis and oxidation from the CRECK kinetic model have been systematically updated to describe the pyrolysis and high- and low-temperature oxidation of this series of fuels. Using the reaction class approach, the reference kinetic parameters have been determined based on experimental, theoretical, and kinetic modeling studies previously reported in the literature, providing a consistent set of rate rules that allow easy extension and good predictive capability. The modeling approach is based on the assumption of an alkane-like and alcohol-specific moiety for the alcohol fuel molecules. A thorough review and discussion of the information available in the literature supports the selection of the kinetic parameters that are then applied to the n-C3-C6 alcohol series and extended for further proof to describe n-octanol oxidation. Because of space limitations, the large amount of information, and the comprehensive character of this study, the manuscript has been divided into two parts. Part I describes the kinetic model as well as the lumping techniques and provides a synoptic synthesis of its wide range validation made possible also by newly obtained experimental data. These include speciation measurements performed in a jet-stirred reactor (p = 107 kPa, T = 550-1100 K, φ = 0.5, 1.0, 2.0) for n-butanol, n-pentanol, and n-hexanol and ignition delay times of ethanol, n-propanol, n-butanol, n-pentanol/air mixtures measured in a rapid compression machine at φ = 1.0, p = 10 and 30 bar, and T = 704-935 K. These data are presented and discussed in detail in Part II, together with detailed comparisons with model predictions and a deep kinetic discussion. This work provides new experimental targets that are useful for kinetic model development and validation (Part II), as well as an extensively validated kinetic model (Part I), which also contains subsets of other reference components for real fuels, thus allowing the assessment of combustion properties of new sustainable fuels and fuel mixtures.

2.
Energy Fuels ; 34(11): 14708-14725, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33250571

RESUMEN

This work presents new experimental data for n-C3-C6 alcohol, combustion (n-propanol, n-butanol, n-pentanol, n-hexanol). Speciation measurements have been carried out in a jet-stirred reactor (p = 107 kPa, T = 550-1100 K, φ = 0.5, 1.0, 2.0) for n-butanol, n-pentanol, and n-hexanol. Ignition delay times of ethanol, n-propanol, n-butanol, and n-pentanol/air mixtures were measured in a rapid compression machine at φ = 1.0, p = 10 and 30 bar, and T = 704-935 K. The kinetic subsets for alcohol pyrolysis and oxidation from the CRECK kinetic model have been systematically updated to describe the pyrolysis and high- and low-temperature oxidation of this series of fuels as described in Part I of this work (Pelucchi M.; Namysl S.; Ranzi E.Combustion of n-C3-C6 linear alcohol: an experimental and kinetic modeling study. Part I: reaction classes, rate rules, model lumping and validation. Submitted to Energy and Fuels, 2020). Part II describes in detail the facilities used for this systematic experimental investigation of n-C3-C6 alcohol combustion and presents a complete validation of the kinetic model by means of comparisons with the new data and measurements previously reported in the literature for both pyrolytic and oxidative conditions. Kinetic analyses such as rate of production and sensitivity analyses are used to highlight the governing reaction pathways and reasons for existing deviations, motivating possible further improvements in our chemistry mechanism.

3.
J Phys Chem A ; 124(34): 6899-6902, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32787002

RESUMEN

The computation by some double-hybrid density functionals of the vibrational modes of a number of CHNO species, including the radicals of carbonic and carbamic acids and of dimethyl carbonate, gives rise to unphysical and anomalous IR spectra with errors well in excess of 1000 cm-1. The effect is not immediately obvious since calculated entropies are largely unaffected, but by contrast, the zero point energies are significantly increased-this has not previously been documented in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA