Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Microbiol Immunol (Bp) ; 11(4): 95-103, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35060920

RESUMEN

Transcription factors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) family control important signaling pathways in the regulation of the host innate immune system. Various bacterial pathogens in the human gastrointestinal tract induce NF-ĸB activity and provoke pro-inflammatory signaling events in infected epithelial cells. NF-ĸB activation requires the phosphorylation-dependent proteolysis of inhibitor of ĸB (IĸB) molecules including the NF-ĸB precursors through ubiquitin-mediated proteolysis. The canonical NF-ĸB pathway merges on IĸB kinases (IKKs), which are required for signal transduction. Using CRISPR-Cas9 technology, secreted embryonic alkaline phosphatase (SEAP) reporter assays and cytokine enzyme-linked immunosorbent assay (ELISA), we demonstrate that the actin-binding protein cortactin is involved in NF-ĸB activation and subsequent interleukin-8 (IL-8) production upon infection by Helicobacter pylori, Salmonella enterica and Pseudomonas aeruginosa. Our data indicate that cortactin is needed to efficiently activate the c-Sarcoma (Src) kinase, which can positively stimulate NF-ĸB during infection. In contrast, cortactin is not involved in activation of NF-ĸB and IL-8 expression upon infection with Campylobacter species C. jejuni, C. coli or C. consisus, suggesting that Campylobacter species pluralis (spp.) induce a different signaling pathway upstream of cortactin to trigger the innate immune response.

2.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205064

RESUMEN

Cortactin is a well-known regulatory protein of the host actin cytoskeleton and represents an attractive target of microbial pathogens like Helicobacter pylori. H. pylori manipulates cortactin's phosphorylation status by type-IV secretion-dependent injection of its virulence protein CagA. Multiple host tyrosine kinases, like FAK, Src, and Abl, are activated during infection, but the pathway(s) involved is (are) not yet fully established. Among them, Src and Abl target CagA and stimulate tyrosine phosphorylation of the latter at its EPIYA-motifs. To investigate the role of cortactin in more detail, we generated a CRISPR/Cas9 knockout of cortactin in AGS gastric epithelial cells. Surprisingly, we found that FAK, Src, and Abl kinase activities were dramatically downregulated associated with widely diminished CagA phosphorylation in cortactin knockout cells compared to the parental control. Together, we report here a yet unrecognized cortactin-dependent signaling pathway involving FAK, Src, and Abl activation, and controlling efficient phosphorylation of injected CagA during infection. Thus, the cortactin status could serve as a potential new biomarker of gastric cancer development.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Quinasa 1 de Adhesión Focal/genética , Infecciones por Helicobacter/genética , Helicobacter pylori/genética , Proteínas Oncogénicas v-abl/genética , Regulación Bacteriana de la Expresión Génica/genética , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Fosforilación/genética , Familia-src Quinasas/genética
3.
Curr Top Microbiol Immunol ; 431: 169-202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33620652

RESUMEN

Campylobacter jejuni and Campylobacter coli can be frequently isolated from poultry and poultry-derived products, and in combination these two species cause a large portion of human bacterial gastroenteritis cases. While birds are typically colonized by these Campylobacter species without clinical symptoms, in humans they cause (foodborne) infections at high frequencies, estimated to cost billions of dollars worldwide every year. The clinical outcome of Campylobacter infections comprises malaise, diarrhea, abdominal pain and fever. Symptoms may continue for up to two weeks and are generally self-limiting, though occasionally the disease can be more severe or result in post-infection sequelae. The virulence properties of these pathogens have been best-characterized for C. jejuni, and their actions are reviewed here. Various virulence-associated bacterial determinants include the flagellum, numerous flagellar secreted factors, protein adhesins, cytolethal distending toxin (CDT), lipooligosaccharide (LOS), serine protease HtrA and others. These factors are involved in several pathogenicity-linked properties that can be divided into bacterial chemotaxis, motility, attachment, invasion, survival, cellular transmigration and spread to deeper tissue. All of these steps require intimate interactions between bacteria and host cells (including immune cells), enabled by the collection of bacterial and host factors that have already been identified. The assortment of pathogenicity-associated factors now recognized for C. jejuni, their function and the proposed host cell factors that are involved in crucial steps leading to disease are discussed in detail.


Asunto(s)
Campylobacter coli , Campylobacter jejuni , Campylobacter , Campylobacter jejuni/genética , Interacciones Huésped-Patógeno , Humanos , Factores de Virulencia/genética
4.
Pathogens ; 11(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35055951

RESUMEN

Cortactin is an actin-binding protein and actin-nucleation promoting factor regulating cytoskeletal rearrangements in eukaryotes. Helicobacter pylori is a gastric pathogen that exploits cortactin to its own benefit. During infection of gastric epithelial cells, H. pylori hijacks multiple cellular signaling pathways, leading to the disruption of key cell functions. Two bacterial virulence factors play important roles in this scenario, the vacuolating cytotoxin VacA and the translocated effector protein CagA of the cag type IV secretion system (T4SS). Specifically, by overruling the phosphorylation status of cortactin, H. pylori alternates the activity of molecular interaction partners of this important protein, thereby manipulating the performance of cytoskeletal rearrangements, endosomal trafficking and cell movement. Based on shRNA knockdown and other studies, it was previously reported that VacA utilizes cortactin for its cellular uptake, intracellular travel and induction of apoptosis by a mitochondria-dependent mechanism, while CagA induces cell scattering, motility and elongation. To investigate the role of cortactin in these phenotypes in more detail, we produced a complete knockout mutant of cortactin in the gastric adenocarcinoma cell line AGS by CRISPR-Cas9. These cells were infected with H. pylori wild-type or various isogenic mutant strains. Unexpectedly, cortactin deficiency did not prevent the uptake and formation of VacA-dependent vacuoles, nor the induction of apoptosis by internalized VacA, while the induction of T4SS- and CagA-dependent AGS cell movement and elongation were strongly reduced. Thus, we provide evidence that cortactin is required for the function of internalized CagA, but not VacA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA