Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 8: 227, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25165432

RESUMEN

Accumulating preclinical evidence suggests the use of amnion as a source of stem cells for investigations of basic science concepts related to developmental cell biology, but also for stem cells' therapeutic applications in treating human disorders. We previously reported isolation of viable rat amniotic fluid-derived stem (AFS) cells. Subsequently, we recently reported the therapeutic benefits of intravenous transplantation of AFS cells in a rodent model of ischemic stroke. Parallel lines of investigations have provided safety and efficacy of stem cell therapy for treating stroke and other neurological disorders. This review article highlights the need for investigations of mechanisms underlying AFS cells' therapeutic benefits and discusses lab-to-clinic translational gating items in an effort to optimize the clinical application of the cell transplantation for stroke.

2.
PLoS One ; 7(8): e43779, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912905

RESUMEN

We recently reported isolation of viable rat amniotic fluid-derived stem (AFS) cells [1]. Here, we tested the therapeutic benefits of AFS cells in a rodent model of ischemic stroke. Adult male Sprague-Dawley rats received a 60-minute middle cerebral artery occlusion (MCAo). Thirty-five days later, animals exhibiting significant motor deficits received intravenous transplants of rat AFS cells or vehicle. At days 60-63 post-MCAo, significant recovery of motor and cognitive function was seen in stroke animals transplanted with AFS cells compared to vehicle-infused stroke animals. Infarct volume, as revealed by hematoxylin and eosin (H&E) staining, was significantly reduced, coupled with significant increments in the cell proliferation marker, Ki67, and the neuronal marker, MAP2, in the dentate gyrus (DG) [2] and the subventricular zone (SVZ) of AFS cell-transplanted stroke animals compared to vehicle-infused stroke animals. A significantly higher number of double-labeled Ki67/MAP2-positive cells and a similar trend towards increased Ki67/MAP2 double-labeling were observed in the DG and SVZ of AFS cell-transplanted stroke animals, respectively, compared to vehicle-infused stroke animals. This study reports the therapeutic potential of AFS cell transplantation in stroke animals, possibly via enhancement of endogenous repair mechanisms.


Asunto(s)
Líquido Amniótico/citología , Conducta Animal/fisiología , Proliferación Celular , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/fisiopatología , Animales , Giro Dentado/metabolismo , Giro Dentado/patología , Femenino , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/fisiopatología , Isquemia/complicaciones , Antígeno Ki-67/análisis , Ventrículos Laterales/metabolismo , Ventrículos Laterales/patología , Masculino , Proteínas Asociadas a Microtúbulos/análisis , Trastornos de la Destreza Motora/fisiopatología , Trastornos de la Destreza Motora/prevención & control , Embarazo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Trastorno de la Conducta Social , Accidente Cerebrovascular/etiología , Factores de Tiempo
3.
J Pineal Res ; 50(3): 272-80, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21269327

RESUMEN

Recent studies have demonstrated that the human placenta is a novel source of adult stem cells. We have provided laboratory evidence that transplantation of these human placenta-derived cells in vitro and in vivo stroke models promotes functional recovery. However, the mechanisms underlying these observed therapeutic benefits of human placenta-derived cells unfortunately remain poorly understood. Here, we examined the expression of two discrete types of melatonin receptors and their roles in proliferation and differentiation of cultured human amniotic epithelial cells (AECs). Cultured AECs express melatonin receptor type 1A (MT1), but not melatonin receptor type 1B (MT2). The proliferation of cultured AECs was increased in the melatonin-treated group in a dose-dependent manner, and the viability of cultured AECs could be further enhanced by melatonin. Moreover, the viability of AECs significantly decreased with H(2) O(2) exposure, which was reversed by pretreatment with melatonin, resulting in increased cell survival rate and cell proliferation. Immunocytochemically, administration of melatonin significantly suppressed nestin proliferation, but enhanced TUJ1 differentiation of MT1-expressing AECs. Additional experiments incorporating antibody blocking and synergistic AEC-melatonin treatments further showed AEC therapeutic benefits via MT1 modulation. Finally, analysis of trophic factors revealed cultured AECs secreted VEGF in the presence of melatonin. These data indicate that melatonin by stimulating MT1 increased cell proliferation and survival rate while enhancing neuronal differentiation of cultured AECs, which together with VEGF upregulation, rendered neuroprotection against experimental in vitro models of ischemic and oxidative stress injury.


Asunto(s)
Amnios/citología , Células Epiteliales/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Antioxidantes/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Humanos , Inmunohistoquímica , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA