Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610387

RESUMEN

In the realm of road safety and the evolution toward automated driving, Advanced Driver Assistance and Automated Driving (ADAS/AD) systems play a pivotal role. As the complexity of these systems grows, comprehensive testing becomes imperative, with virtual test environments becoming crucial, especially for handling diverse and challenging scenarios. Radar sensors are integral to ADAS/AD units and are known for their robust performance even in adverse conditions. However, accurately modeling the radar's perception, particularly the radar cross-section (RCS), proves challenging. This paper adopts a data-driven approach, using Gaussian mixture models (GMMs) to model the radar's perception for various vehicles and aspect angles. A Bayesian variational approach automatically infers model complexity. The model is expanded into a comprehensive radar sensor model based on object lists, incorporating occlusion effects and RCS-based detectability decisions. The model's effectiveness is demonstrated through accurate reproduction of the RCS behavior and scatter point distribution. The full capabilities of the sensor model are demonstrated in different scenarios. The flexible and modular framework has proven apt for modeling specific aspects and allows for an easy model extension. Simultaneously, alongside model extension, more extensive validation is proposed to refine accuracy and broaden the model's applicability.

2.
Sensors (Basel) ; 21(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34833657

RESUMEN

The virtual testing and validation of advanced driver assistance system and automated driving (ADAS/AD) functions require efficient and realistic perception sensor models. In particular, the limitations and measurement errors of real perception sensors need to be simulated realistically in order to generate useful sensor data for the ADAS/AD function under test. In this paper, a novel sensor modeling approach for automotive perception sensors is introduced. The novel approach combines kernel density estimation with regression modeling and puts the main focus on the position measurement errors. The modeling approach is designed for any automotive perception sensor that provides position estimations at the object level. To demonstrate and evaluate the new approach, a common state-of-the-art automotive camera (Mobileye 630) was considered. Both sensor measurements (Mobileye position estimations) and ground-truth data (DGPS positions of all attending vehicles) were collected during a large measurement campaign on a Hungarian highway to support the development and experimental validation of the new approach. The quality of the model was tested and compared to reference measurements, leading to a pointwise position error of 9.60% in the lateral and 1.57% in the longitudinal direction. Additionally, the modeling of the natural scattering of the sensor model output was satisfying. In particular, the deviations of the position measurements were well modeled with this approach.


Asunto(s)
Conducción de Automóvil , Vehículos Autónomos
3.
Sensors (Basel) ; 21(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808936

RESUMEN

A spectacular measurement campaign was carried out on a real-world motorway stretch of Hungary with the participation of international industrial and academic partners. The measurement resulted in vehicle based and infrastructure based sensor data that will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles-equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization-carried out special test scenarios while collecting detailed data using different sensors. All of the test runs were recorded by both vehicles and infrastructure. The paper also showcases application examples to demonstrate the viability of the collected data having access to the ground truth labeling. This data set may support a large variety of solutions, for the test and validation of different kinds of approaches and techniques. As a complementary task, the available 5G network was monitored and tested under different radio conditions to investigate the latency results for different measurement scenarios. A part of the measured data has been shared openly, such that interested automotive and academic parties may use it for their own purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA