Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vet Res ; 55(1): 16, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317245

RESUMEN

Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.


Asunto(s)
Avulavirus , Enfermedades de los Bovinos , Enfermedad de Newcastle , Enfermedades de los Roedores , Rotavirus , Vacunas Virales , Animales , Bovinos , Humanos , Ratones , Virus de la Enfermedad de Newcastle/genética , Pollos , Anticuerpos Antivirales , Vectores Genéticos , Avulavirus/genética , Proteínas Virales/genética , Vacunas de Productos Inactivados , Inmunidad
2.
Int J Surg ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329104

RESUMEN

BACKGROUND: Immunodeficient mice models have become increasingly important as in vivo models engrafted with human cells or tissues for research. The NOD-Rag1null Ins2Akita Il2rnull (NRG Akita) mice is a model combined with immunodeficient NRG and monogenic diabetes Akita mice that develop spontaneous hyperglycemia with progressive loss of pancreatic insulin-producing beta-cells with age. This model is one of the monogenic diabetic models, which has been providing a powerful platform for transplantation experiments of stem cells-generated human ß-cells. This research aimed to provide insights into the mechanisms underlying this monogenic diabetes, which remains incompletely understood. METHODS: Histological and immunofluorescence analyses were conducted on endocrine pancreatic islets to compare NRG wild-type (Wt) controls with NRG-Akita mice. Our investigation focused on assessing the expression of endocrine hormones, transcription factors, proliferation, ER stress, and apoptosis. RESULTS: Histological analyses on NRG-Akita mice revealed smaller islets at 6-weeks-old, due to fewer ß-cells in the islets, compared to NRG-Wt controls, which further progressed with age. The proliferation rate decreased, and apoptosis was abundant in ß-cells in NRG Akita mice. Interestingly, our mechanistic analyses revealed that ß-cells in NRG-Akita mice progressively accumulated the endoplasmic reticulum (ER) stresses, leading to a decreased expression of pivotal ß-cell transcriptional factor PDX1. CONCLUSIONS: Altogether, our mechanistic insight into ß-cell loss in this model could shed light on essential links between ER stress, proliferation, and cell identity, which might open the door to new therapeutic strategies for various diseases since ER stress is one of the most common features not only in diabetes but also in other degenerative diseases.

3.
Biomedicines ; 11(2)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36830991

RESUMEN

The therapeutic potential of Newcastle disease virus (NDV) has been reported as both an oncolytic agent and a vaccine vector against many antigens. However, in the individuals already immunized with NDVs, second and subsequent administration does not provide substantial benefits. In this study, two types of recombinant chimeric NDVs using APMV-2 F and HN genes were generated. In rNDV-2HN, the wild-type NDV HN gene was replaced with the APMV-2 HN gene, and in rNDV-2F/2HN, both wild-type F and HN genes were replaced with APMV-2 F and HN genes, respectively. We enhanced the immune responses of these chimeric viruses by inserting the human IFN-γ gene. To examine the escape from NDV antiserum, each virus was treated with diluted NDV antiserum, and HEp-2 cells were infected with these virus particles. The two constructed chimeric viruses indicated notably lower virus-neutralizing titer compared to wild-type NDV and escaped the action of NDV antiserum. These two chimeric viruses infected both respiratory and colon cancer cell lines, indicating their potential as a cancer treatment tool. Chimeric viruses with enhanced immune responses can be considered a novel therapeutic strategy in cancer treatment that can be administered multiple times and used to enhance immune cells interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA