Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(28): 24952-24963, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483179

RESUMEN

The present work involves investigating an unexplored soft-chemical method for synthesizing nanostructured ZnO through biopolymer gelation. Our objective was to exploit (i) the difference in the gelation mechanism of four tested biopolymers, namely, alginate, chitosan, carboxymethylcellulose (CMC), and pectin and (ii) numerous experimental parameters that govern this process in order to allow the control of the growth of nanostructured ZnO, with a view to using the prepared oxides as photocatalysts for the oxidation of the Orange G dye. So, the effect of biopolymer's nature on the microstructural, morphological, and textural properties was examined by thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field-emission gun-scanning electron microscopy-high resolution (FEG-SEM) with energy-dispersive spectrometry (SEM-EDS), ultraviolet-visible (UV-vis) spectroscopy, and N2 adsorption/desorption. As-prepared oxides were crystallized in a hexagonal wurtzite structure, with a clear difference in their morphologies. The sample prepared by using chitosan has a specific surface area of around 36.8 m2/g in the form of aggregated and agglomerated nanostructured minirods and thus shows the best photocatalytic performance with 99.3% degradation of the Orange G dye in 180 min.

2.
ACS Omega ; 7(32): 27839-27850, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35990426

RESUMEN

Well-organized zirconia (ZrO2) nanoparticles forming mesoporous materials have been successfully synthesized via a facile micelle-templating method using cetyltrimethylammonium bromide as a structure-directing template to control the nucleation/growth process and porosity. The systematic use of such a surfactant in combination with a microwave-assisted solvothermal (cyclohexane/water) reaction enabled the control of pore size in a narrow-size distribution range (3-17 nm). The effect of solvent mixture ratio on the porosity of the synthesized oxide was determined, and the controlled growth of zirconia nanoparticles was confirmed by means of powder X-ray diffraction, small-angle X-ray scattering, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy as well as N2 physisorption isotherm analysis. Then, the as-prepared nanostructured zirconia oxides were treated with sulfuric acid to have sulfated samples. The catalytic performances of these mesoporous zirconia nanoparticles and their sulfated samples were tested for levulinic acid (LA) esterification by ethanol, with quantitative conversions of LA to ethyl levulinate after 8 h of reaction.

3.
ACS Omega ; 7(32): 27831-27838, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35990453

RESUMEN

An innovative hybrid organic-inorganic material composed of alginate-brushite xerogel beads was successfully applied for the catalysis of the Knoevenagel condensation. The catalyst was derived from phosphated alginate xerogel microspheres formed from the ionotropic gelling effect of phosphated alginate. To this end, alginate was phosphated by the addition of diammonium hydrogen phosphate in a 1% w/w alginate gel. The phosphated alginate was subsequently precipitated by chelation of Ca2+ cations, generating a phosphated alginate hydrogel microsphere, which was washed and dried, forming hybrid organic-inorganic xerogel beads as a crystalline phosphate-rich mineral fraction covered by alginate. X-ray diffraction analysis revealed that the crystalline inorganic matrix of the material was composed predominantly of brushite. SEM analysis revealed plate-like, ribbon-like, or needle-like morphologies in the hybrid alginate-brushite beads. The hybrid material was tested as a catalyst for Knoevenagel condensation, which was performed ″on-water″ under mild conditions with aromatic aldehydes and activated methylene compounds, giving high yields (up to 97%). The reaction rate and product yield increased together with the reaction temperature for all reagents. The recyclable solid catalyst was effective for three runs, revealing the potential of the innovative hybrid catalyst as an eco-friendly heterogeneous catalyst.

4.
ACS Omega ; 5(1): 304-316, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31956777

RESUMEN

The conversion of poplar wood biomass to highly value-added chemicals and molecular building blocks was achieved by using the dispersed mixed oxide Zn3V2O8 (ZVO) in water under 100 kPa of 10% O2/N2 at 160, 180, and 200 °C for 4 h. This nanostructured mixed oxide was prepared via the precipitation process and then characterized by several techniques. The results showed that this mixed oxide has interesting catalytic properties and is a versatile catalyst for biomass delignification and lignin and hemicellulose depolymerization. ZVO exhibited high activity on poplar biomass delignification and fractionation (degree of delignification > 97%) and lignin and holocellulose conversion with high yield into aromatic and furan compounds (80 mg/g initial wood at 200 °C), with high selectivities for 5-hydroxymethylfurfural (HMF) (25 mg/g of initial wood), vanillin, and syringaldehyde.

5.
RSC Adv ; 10(33): 19443-19453, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35515433

RESUMEN

Nanocrystalline titania was synthesized by a simple, innovative and eco-friendly gelation method by using biopolymers (polysaccharides). The effect of the gelling agent, such as carboxymethylcellulose (CMC) or alginate (Alg), and the drying routes (conventional drying at room temperature, or freeze-drying) on the properties and photocatalytic performances of nanostructured TiO2 was examined. The crystallographic structures, and textural and morphological characteristics were investigated by thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersive spectrometry (ESEM-FEG-EDS), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and N2 adsorption/desorption isotherms. The as-synthesized samples were fully crystallized and appeared to be highly phase-pure anatase or mixed titania polymorphs, and have a quasi-spherical shape with a particle size ranging from 10.34 to 18.07 nm. Phase-pure anatase was obtained by using alginate as the gelling agent, whereas CMC's gelation promotes mixed structures. The presence of rutile phase results in a lower bandgap value of 3.04 eV corresponding to 408 nm. Thus, the material absorption wavelength shifts slightly from the UV (190-380 nm) to visible region (380-750 nm). The drying process also affects TiO2 properties. The lyophilization route improves the oxide's specific surface area, and also its photocatalytic properties verified during Orange G dye photodegradation study.

6.
Int J Biol Macromol ; 96: 340-352, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27988293

RESUMEN

Novel synthesis strategy of eco-friendly bio-nanocomposite films have been exploited using cellulose nanocrystals (CNC) and polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) blend matrix as a potential in food packaging application. The CNC were extracted from sugarcane bagasse using sulfuric acid hydrolysis, and they were successfully characterized regarding their morphology, size, crystallinity and thermal stability. Thereafter, PVA/CMC-CNC bio-nanocomposite films, at various CNC contents (0.5-10wt%), were fabricated by the solvent casting method, and their properties were investigated. It was found that the addition of 5wt% CNC within a PVA/CMC increased the tensile modulus and strength by 141% and 83% respectively, and the water vapor permeability was reduced by 87%. Additionally, the bio-nanocomposites maintained the same transparency level of the PVA/CMC blend film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. In these bio-nanocomposites, the adhesion properties and the large number of functional groups that are present in the CNC's surface and the macromolecular chains of the PVA/CMC blend are exploited to improve the interfacial interactions between the CNC and the blend. Consequently, these eco-friendly structured bio-nanocomposites with superior properties are expected to be useful in food packaging applications.


Asunto(s)
Celulosa/química , Nanocompuestos/química , Nanopartículas/química , Nanotecnología/métodos , Saccharum/química , Carboximetilcelulosa de Sodio/química , Estabilidad de Medicamentos , Tecnología Química Verde , Hidrólisis , Fenómenos Ópticos , Alcohol Polivinílico , Vapor , Temperatura , Resistencia a la Tracción
7.
Phys Chem Chem Phys ; 18(15): 10375-82, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27029601

RESUMEN

SnP2O7 was prepared by a sol-gel route. The structural changes of tin pyrophosphate during the electrochemical lithiation were followed by using in situ XRD measurements that reveal the existence of a crystalline phase at the beginning of the discharge process. Nevertheless, it becomes amorphous after the full discharge as a result of a conversion reaction leading to the formation of LixSny alloys. The electrochemical tests show a high capacity with high retention upon cycling. To better understand the reaction mechanism of SnP2O7 with Li, several techniques were applied, such as ex situ(119)Sn Mössbauer and ex situ(7)Li and (31)P NMR spectroscopies with which we can follow the changes in the local environment of each element during cycling.

8.
ChemSusChem ; 9(1): 97-108, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26692568

RESUMEN

The cathode material P2-Nax Co2/3 Mn2/9 Ni1/9 O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions. Cobalt, nickel, and manganese are all electrochemically active upon cycling between 4.5 and 2.0 V; all are in the 4+ state at the end of charging. Reduction to Co(3+), Ni(3+), and Mn(3+) occurs upon discharging and, at low potential, there is partial reversible reduction to Co(2+) and Ni(2+). A thin layer of Na2 CO3 and NaF covers the pristine electrode and reversible dissolution/reformation of these compounds is observed during the first cycle. The salt degradation products in the SPI show a dependence on potential. Phosphates mainly form at the end of the charging cycle (4.5 V), whereas fluorophosphates are produced at the end of discharging (2.0 V).


Asunto(s)
Cobalto/química , Suministros de Energía Eléctrica , Compuestos de Manganeso/química , Níquel/química , Espectroscopía de Fotoelectrones , Sodio/química , Electroquímica , Electrodos , Oxidación-Reducción , Óxidos/química , Propiedades de Superficie
9.
Carbohydr Polym ; 137: 239-248, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26686126

RESUMEN

Novel functional hybrid nanofillers composed of cellulose nanocrystals (CNC) and graphene oxide nanosheets (GON), at different weight ratios (2:1, 1:1 and 1:2), were successfully prepared and characterized, and their synergistic effect in enhancing the properties of poly(vinyl alcohol) (PVA) nanocomposites was investigated. Due to the synergistic reinforcement, it was found that the Young's modulus, tensile strength and toughness of the PVA nanocomposite containing 5 wt% hybrid nanofiller (1:2) were significantly improved by 320%, 124% and 159%, respectively; and the elongation at break basically remained compared to the neat PVA matrix. In addition, the glass and melting temperatures as well as the moisture sorption of nanocomposites were also enhanced. This synergistic effect improved the dispersion homogeneity by avoiding the agglomeration phenomenon of nanofillers within the polymer matrix, resulting in nanocomposites with largely enhanced properties compared to those prepared from single nanofiller (CNC or GON). The preparation of these hybrid nanofillers and their incorporation into a polymer provided a novel method for the development of novel multifunctional nanocomposites based on the combination of existing nanomaterials.

10.
Carbohydr Polym ; 129: 156-67, 2015 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-26050901

RESUMEN

This study was aimed to develop bio-nanocomposite films of carboxymethyl cellulose (CMC)/starch (ST) polysaccharide matrix reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis and used as reinforcing phase to produce CMC/ST-CNC bio-nanocomposite films at different CNC loading levels (0.5-5.0 wt%). Steady shear viscosity and dynamic viscoelastic measurements of film-forming solution (FFS) of neat CMC, CMC/ST blend and CMC/ST-CNC bio-nanocomposites were evaluated. Viscosity measurements revealed that a transition from Newtonian behavior to shear thinning occurred when CNC were added. The dynamic tests confirmed that all FFS have a viscoelastic behavior with an entanglement network structure, induced by the hydrogen bonding. In regard to the cast film quality, the rheological data showed that all FFS were suitable for casting of films at ambient temperature. The effect of CNC addition on the optical transparency, water vapor permeability (WVP) and tensile properties of bio-nanocomposite films was studied. It was found that bio-nanocomposite films remain transparent due to CNC dispersion at the nanoscale. The WVP was significantly reduced and the elastic modulus and tensile strength were increased gradually with the addition of CNC. Herein, the steps to form new eco-friendly bio-nanocomposite films were described by taking advantage of the combination of CMC, ST and CNC. The as-produced films exhibited good optical transparency, reduced WVP and enhanced tensile properties, which are the main properties required for packaging applications.


Asunto(s)
Celulosa/química , Nanocompuestos/química , Nanopartículas/química , Reología , Vapor/análisis , Resistencia a la Tracción , Álcalis/química , Elasticidad , Permeabilidad , Saccharum/química , Soluciones , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química , Viscosidad
11.
Mater Sci Eng C Mater Biol Appl ; 35: 341-6, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24411386

RESUMEN

In this report new hybrid materials based on brushite-alginate and monetite-alginate were prepared by self-assembling alginate chains and phosphate source ions via a gelation process with calcium ions. The alginate served as nanoreactor for nucleation and growth of brushite or/and monetite due to its gelling and swelling properties. The alginate gel framework, the crystalline phase and morphology of formed hybrid biomaterials were shown to be strongly dependent upon the concentration of the phosphate precursors. These materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX).


Asunto(s)
Alginatos/química , Materiales Biomiméticos/síntesis química , Biomimética/métodos , Fosfatos de Calcio/química , Cristalización/métodos , Diseño de Fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Microesferas , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
12.
Dalton Trans ; 40(13): 3116-21, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21340087

RESUMEN

The Suzuki-Miyaura coupling reaction represents one of the most important synthetic transformations developed in the 20th century. However, the use of toxic organic solvents remains a scientific challenge and an aspect of economical and ecological relevance, and benign water as a reaction medium was found to be highly effective to overcome some of these issues. In the present manuscript, we described Suzuki-Miyaura coupling reactions in neat water, without using any phase transfer reagent. Notably, this protocol also works with ultra-low loading of catalyst with high turnover numbers and also able to couple challenging substrates like aryl chlorides.


Asunto(s)
Agua/química , Catálisis , Complejos de Coordinación/química , Tecnología Química Verde , Paladio/química
13.
Angew Chem Int Ed Engl ; 48(14): 2529-33, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19248061

RESUMEN

Are you in? Bimetallic PtRu nanoparticles have been selectively confined inside or deposited outside carbon nanotubes (see picture). The confined nanoparticles display significantly higher selectivity and catalytic activity in hydrogenation reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA