Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 2): 133418, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936577

RESUMEN

Microfluidic cell encapsulation has provided a platform for studying the behavior of individual cells and has become a turning point in single-cell analysis during the last decade. The engineered microenvironment, along with protecting the immune response, has led to increasingly presenting the results of practical and pre-clinical studies with the goals of disease treatment, tissue engineering, intelligent control of stem cell differentiation, and regenerative medicine. However, the significance of cell-substrate interaction versus cell-cell communications in the microgel is still unclear. In this study, monodisperse alginate microgels were generated using a flow-focusing microfluidic device to determine how the cell microenvironment can control human bone marrow-derived mesenchymal stem cells (hBMSCs) viability, proliferation, and biomechanical features in single-cell droplets versus multi-cell droplets. Collected results show insufficient cell proliferation (234 % and 329 %) in both single- and multi-cell alginate microgels. Alginate hydrogels supplemented with poly-l-lysine (PLL) showed a better proliferation rate (514 % and 780 %) in a comparison of free alginate hydrogels. Cell stiffness data illustrate that hBMSCs cultured in alginate hydrogels have higher membrane flexibility and migration potency (Young's modulus equal to 1.06 kPa), whereas PLL introduces more binding sites for cell attachment and causes lower flexibility and migration potency (Young's modulus equal to 1.83 kPa). Considering that cell adhesion is the most important parameter in tissue engineering, in which cells do not run away from a 3D substrate, PLL enhances cell stiffness and guarantees cell attachments. In conclusion, cell attachment to PLL-mediated alginate hydrogels is crucial for cell viability and proliferation. It suggests that cell-cell signaling is good enough for stem cell viability, but cell-PLL attachment alongside cell-cell signaling is crucial for stem cell proliferation and self-renewal.


Asunto(s)
Alginatos , Adhesión Celular , Proliferación Celular , Células Madre Mesenquimatosas , Microgeles , Polilisina , Alginatos/química , Alginatos/farmacología , Polilisina/química , Polilisina/farmacología , Humanos , Adhesión Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular/efectos de los fármacos , Microgeles/química , Microfluídica/métodos , Comunicación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Encapsulación Celular/métodos , Análisis de la Célula Individual , Autorrenovación de las Células/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
2.
iScience ; 27(2): 108828, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303727

RESUMEN

Axonal damage is the main characteristic of neurodegenerative diseases. This research was focused on remodeling cell morphology and developing a semi-tissue nanoenvironment via mechanobiological stimuli. The combination of nanogroove topography and polyaniline-chitosan enabled the manipulation of the cells by changing the morphology of PC12 cells to spindle shape and inducing the early stage of signal transduction, which is vital for differentiation. The nanosubstarte embedded with nanogooves induced PC12 cells to elongate their morphology and increase their size by 51% as compared with controls. In addition, the use of an electroconductive nanocomposite alongside nanogrooves resulted in the differentiation of PC12 cells into neurons with an average length of 193 ±7 µm for each axon and an average number of seven axons for each neurite. Our results represent a combined tool to initiate a promising future for cell reprogramming by inducing cell differentiation and specific cellular morphology in many cases, including neurodegenerative diseases.

3.
Sci Rep ; 11(1): 16216, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376720

RESUMEN

Biomechanical and morphological analysis of the cells is a novel approach for monitoring the environmental features, drugs, and toxic compounds' effects on cells. Graphene oxide (GO) has a broad range of medical applications such as tissue engineering and drug delivery. However, the effects of GO nanosheets on biological systems have not been completely understood. In this study, we focused on the biophysical characteristics of cells and their changes resulting from the effect of GO nanosheets. The biophysical properties of the cell population were characterized as follows: cell stiffness was calculated by atomic force microscopy, cell motility and invasive properties were characterized in the microfluidic chip in which the cells are able to visualize cell migration at a single-cell level. Intracellular actin was stained to establish a quantitative picture of the intracellular cytoskeleton. In addition, to understand the molecular interaction of GO nanosheets and actin filaments, coarse-grained (CG) molecular dynamics (MD) simulations were carried out. Our results showed that GO nanosheets can reduce cell stiffness in MCF7 cells and MDA-MB-231 cell lines and highly inhibited cell migration (39.2%) in MCF-7 and (38.6%) in MDA-MB-231 cell lines through the GO nanosheets-mediated disruption of the intracellular cytoskeleton. In the presence of GO nanosheets, the cell migration of both cell lines, as well as the cell stiffness, significantly decreased. Moreover, after GO nanosheets treatment, the cell actin network dramatically changed. The experimental and theoretical approaches established a quantitative picture of changes in these networks. Our results showed the reduction of the order parameter in actin filaments was 23% in the MCF7 cell line and 20.4% in the MDA-MB-231 cell line. The theoretical studies also showed that the GO nanosheet-actin filaments have stable interaction during MD simulation. Moreover, the 2D free energy plot indicated the GO nanosheet can induce conformational changes in actin filaments. Our findings showed that the GO nanosheets can increase the distance of actin-actin subunits from 3.22 to 3.5 nm and in addition disrupt native contacts between two subunits which lead to separate actin subunits from each other in actin filaments. In this study, the biomechanical characteristics were used to explain the effect of GO nanosheets on cells which presents a novel view of how GO nanosheets can affect the biological properties of cells without cell death. These findings have the potential to be applied in different biomedical applications.


Asunto(s)
Citoesqueleto de Actina/fisiología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Movimiento Celular , Grafito/química , Microfluídica , Modelos Teóricos , Nanopartículas/administración & dosificación , Citoesqueleto de Actina/efectos de los fármacos , Muerte Celular , Femenino , Humanos , Simulación de Dinámica Molecular , Nanopartículas/química , Células Tumorales Cultivadas
4.
J Biomol Struct Dyn ; 38(11): 3371-3383, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31496378

RESUMEN

The ß42 amyloid peptides (Aß) are identified as a candidate target for Alzheimer's drugs. Phenolic compounds can bind to the Aß and inhibit amyloid formation. However, the inhibitory mechanism of phenolic compounds remains unclear. In this study, the molecular dynamic simulation and docking program were used to characterize the molecular details of inhibitory mechanism of the phenolic compounds. Our Results show that the phenolic compounds can bind to hydrophobic region in Aß42 monomer and alter hydrophobic interactions network at Aß42 which play a key role in ß-sheet formation. The cluster analysis and interactions network analysis were used to probe conformational changes in Aß42. In most populated clusters of Aß42-phenolic compounds complexes, the sheet structures were not observed or reduced. It seems that the binding of phenolic compounds can induce larger conformational diversity for amyloid peptide and changes conformational properties of amyloid peptide. The phenolic compounds can deform ß-Hairpin structure of Aß by destabilizing salt bridges E22-K28 and D23-K28 which can alter the conformation of Aß42 in aqueous solution. These findings are in accordance with experimental results, to some extent give a molecular level interpretation for the inhibitory mechanism of phenolic compounds .In addition, this study may add important new details to the inhibitory mechanism of Alzheimer's drug.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Alzheimer , Preparaciones Farmacéuticas , Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide , Péptidos beta-Amiloides , Humanos , Simulación de Dinámica Molecular , Fragmentos de Péptidos , Conformación Proteica en Lámina beta
5.
J Mol Graph Model ; 91: 194-203, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31265936

RESUMEN

Lack of perfect insulin signaling can lead to the insulin resistance, which is the hallmark of diabetes mellitus. Activation of insulin and its binding to the receptor for signaling process initiates via B-chain C-terminal hinge conformational change through an open structure to "wide-open" conformation. Observational studies and basic scientific evidence suggest that vitamin D and E directly and/or indirectly prevent diabetes through improving glucose secretion and tolerance, activating calcium dependent endopeptidases and thus improving insulin exocytosis, antioxidant effect and reducing insulin resistance. On the contrary, clinical trials have yielded inconsistent results about the efficacy of vitamin D supplementations for the control of glucose hemostasis. In this work, best binding modes of vitamin D3 and E on insulin obtained from AutoDock Vina were selected for Molecular Dynamic, MD, study. The binding energy obtained from Molecular Mechanics- Poisson Boltzman Surface Area, MM-PBSA method, revealed that Vitamins D3 and E have good affinity to bind to the insulin and vitamin E has higher binding energy (-46 kj/mol) by engaging more residues in binding site. Distance and angle calculation results illustrated that vitamin E changes the B-chain conformation and it causes the formation of wide-open/active form of insulin. Vitamin E increases the ValB12-TyrB26 distance to ∼15 Šand changes the hinge angle to ∼65°. Consequently, essential hydrophobic residues for binding to insulin receptor exposed to surface in the presence of vitamin E. However, our data illustrated that vitamin D3 cannot change B-chain conformation. Thus our MD simulations propose a model for insulin activation through vitamin E interaction for therapeutic approaches.


Asunto(s)
Insulina/química , Insulina/metabolismo , Vitamina E/metabolismo , Aminoácidos/química , Colecalciferol/química , Colecalciferol/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Vitamina E/química , alfa-Tocoferol/química , alfa-Tocoferol/metabolismo
6.
Micromachines (Basel) ; 11(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31906040

RESUMEN

Organ-on-a-chip technology has gained great interest in recent years given its ability to control the spatio-temporal microenvironments of cells and tissues precisely. While physical parameters of the respective niche such as microchannel network sizes, geometric features, flow rates, and shear forces, as well as oxygen tension and concentration gradients, have been optimized for stem cell cultures, little has been done to improve cell-matrix interactions in microphysiological systems. Specifically, detailed research on the effect of matrix elasticity and extracellular matrix (ECM) nanotopography on stem cell differentiation are still in its infancy, an aspect that is known to alter a stem cell's fate. Although a wide range of hydrogels such as gelatin, collagen, fibrin, and others are available for stem cell chip cultivations, only a limited number of elasticities are generally employed. Matrix elasticity and the corresponding nanotopography are key factors that guide stem cell differentiation. Given this, we investigated the addition of gold nanowires into hydrogels to create a tunable biointerface that could be readily integrated into any organ-on-a-chip and cell chip system. In the presented work, we investigated the matrix elasticity (Young's modulus, stiffness, adhesive force, and roughness) and nanotopography of gold nanowire loaded onto fibrin hydrogels using the bio-AFM (atomic force microscopy) method. Additionally, we investigated the capacity of human amniotic mesenchymal stem cells (hAMSCs) to differentiate into osteo- and chondrogenic lineages. Our results demonstrated that nanogold structured-hydrogels promoted differentiation of hAMSCs as shown by a significant increase in Collagen I and II production. Additionally, there was enhanced calcium mineralization activity and proteoglycans formation after a cultivation period of two weeks within microfluidic devices.

7.
Int J Biol Macromol ; 93(Pt A): 868-878, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27642128

RESUMEN

Changes in human environment and lifestyle over the last century have caused a dramatic increase in the occurrence of diabetes. Research of past decades illustrated that vitamin D and E have a key role in the improvement of diabetes by reducing oxidative stress, protein glycosylation, insulin resistance and also improving beta cell function. Binding properties and conformational changes of human insulin upon interaction with vitamins D3 and E (α-tocopherol) were investigated by spectroscopy, differential scanning calorimetry (DSC) and molecular dynamic simulation. Tyrosine fluorescence quenching studies indicates changes in the human insulin conformation in the presence of vitamins. Binding constants of vitamins D3 and E for human insulin were determined to be 2.7 and 1.5 (×10-5M-1) and the corresponding average numbers of binding sites were determined to be 1.3 and 1.2, respectively. Far- and near-UV circular dichroism studies showed that vitamin E can significantly change the secondary and tertiary structures of human insulin via an increase in the content of α-helix structure. Results of DSC showed that both vitamins D3 and E stabilize the structure of human insulin. Molecular dynamic simulation results indicated that vitamin D3 decreases the helical and strand structural contents of human insulin, but vitamin E stabilizes more regular secondary structures such as helical and strand structural contents as shown by experimental results.


Asunto(s)
Colecalciferol/química , Insulina/química , Vitamina E/química , Secuencia de Aminoácidos , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Dispersión Dinámica de Luz , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA