RESUMEN
A new curcuminoid molecule (3) has been designed and synthesized, containing a central -(CH2)2-COOH chain at the α carbon of the keto-enol moiety in the structure. The carboxylic acid group is added to react with exposed amino groups on silica oxide nanoparticles (nSiO2), forming an amide bond to attach the curcuminoid moiety to the nSiO2 covalently. The Kaiser test quantifies the functionalization degree, yielding 222 µmol of curcuminoid per gram of nanoparticles. The synthesized hybrid nanosystem, nSiO2-NHCO-CCM, displays significant emission properties, with a maximum emission at 538 nm in dichloromethane, similar to curcuminoid 1 (without the central chain), which emits at 565 nm in the same solvent. Solvent-induced spectral effects on the absorption and emission bands of the new hybrid nanosystem are confirmed, similar to those observed for the free curcuminoid (1). The new nanosystem is evaluated in the presence of kerosene in water, showing an emission band at 525 nm as a detection response. The ability of nSiO2-NHCO-CCM to change its fluorescence when interacting with kerosene in water is notable, as it overcomes the limitation caused by the insolubility of free curcuminoid 1 in water, allowing for the exploitation of its properties when connected to the water-stable nanosystem for future detection studies.
RESUMEN
The ß-amyloid (Aß) peptide is one of the key etiological agents in Alzheimer's disease (AD). The in vivo detection of Aß species is challenging in all stages of the illness. Currently, the development of fluorescent probes allows the detection of Aß in animal models in the near-infrared region (NIR). However, considering future applications in biomedicine, it is relevant to develop strategies to improve detection of amyloid aggregates using NIR probes. An innovative approach to increase the fluorescence signal of these fluorophores is the use of plasmonic gold nanoparticles (surface-enhanced fluorescence effect). In this work, we improved the detection of Aß aggregates in C. elegans and mouse models of AD by co-administering functionalized gold nanorods (GNRs-PEG-D1) with the fluorescent probes CRANAD-2 or CRANAD-58, which bind selectively to different amyloid species (soluble and insoluble). This work shows that GNRs improve the detection of Aß using NIR probes in vivo.
Asunto(s)
Enfermedad de Alzheimer , Nanopartículas del Metal , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Animales , Caenorhabditis elegans , Colorantes Fluorescentes/química , Oro , Nanopartículas del Metal/química , RatonesRESUMEN
Gold nanoparticles (AuNP) capped with biocompatible layers have functional optical, chemical, and biological properties as theranostic agents in biomedicine. The ferritin protein containing in situ synthesized AuNPs has been successfully used as an effective and completely biocompatible nanocarrier for AuNPs in human cell lines and animal experiments in vivo. Ferritin can be uptaken by different cell types through receptor-mediated endocytosis. Despite these advantages, few efforts have been made to evaluate the toxicity and cellular internalization of AuNP-containing ferritin nanocages. In this work, we study the potential of human heavy-chain (H) and light-chain (L) ferritin homopolymers as nanoreactors to synthesize AuNPs and their cytotoxicity and cellular uptake in different cell lines. The results show very low toxicity of ferritin-encapsulated AuNPs on different human cell lines and demonstrate that efficient cellular ferritin uptake depends on the specific H or L protein chains forming the ferritin protein cage and the presence or absence of metallic cargo. Cargo-devoid apoferritin is poorly internalized in all cell lines, and the highest ferritin uptake was achieved with AuNP-loaded H-ferritin homopolymers in transferrin-receptor-rich cell lines, showing more than seven times more uptake than apoferritin.
RESUMEN
The early detection of the amyloid beta peptide aggregates involved in Alzheimer's disease is crucial to test new potential treatments. In this research, we improved the detection of amyloid beta peptide aggregates in vitro and ex vivo by fluorescence combining the use of CRANAD-2 and gold nanorods (GNRs) by the surface enhancement fluorescence effect. We synthetized GNRs and modified their surface with HS-PEG-OMe and HS-PEG-COOH and functionalized them with the D1 peptide, which has the capability to selectively bind to amyloid beta peptide. For an in vitro detection of amyloid beta peptide, we co-incubated amyloid beta peptide aggregates with the probe CRANAD-2 and GNR-PEG-D1 observing an increase in the intensity of the fluorescence signal attributed to surface enhancement fluorescence. Furthermore, the surface enhancement fluorescence effect was observed in brain slices of transgenic mice with Alzheimer´s disease co-incubated with CRANAD-2 and GNR-PEG-D1. An increase in the fluorescence signal was observed allowing the detection of aggregates that cannot be detected with the single use of CRANAD-2. Gold nanoparticles allowed an improvement in the detection of the amyloid aggregated by fluorescence in vitro and ex vivo.
RESUMEN
Ferritin is a globular hollow protein that acts as the major iron storage protein across living organisms. The 8 nm-diameter internal cavity of ferritin has been used as a nanoreactor for the synthesis of various metallic nanoparticles different to iron oxides. For this purpose, ferritin is incubated in solution with metallic ions that enter the cavity through its natural channels. Then, these ions are subjected to a reduction step to obtain highly monodisperse metallic nanoparticles, with enhanced stability and biocompatibility provided by the ferritin structure. Potential biomedical applications of ferritin-nanoparticle complex will require the use of human ferritin to provide a safer and low-risk alternative for the delivery of metallic nanoparticles into the body. However, most of the reported protocols for metallic nanoparticles synthesis uses horse spleen ferritin as nanocontainer. Previous studies have acknowledged technical difficulties with recombinant human ferritin during the synthesis of metallic nanoparticles, like protein precipitation, which is translated into low recovery yields. In this study, we tested a novel photochemical reduction method for silver nanoparticle synthesis in human recombinant ferritin and compared it with the traditional chemical reduction method. The results show that photoreduction of silver ions inside ferritin cavity provides a universal method for silver nanoparticle synthesis in both recombinant human ferritin homopolymers (Light and Heavy ferritin). Additionally, we report important parameters that account for the efficiency of the method, such as ferritin recovery yield (~60%) and ferritinsilver nanoparticle yield (34% for H-ferritin and 17% for L-ferritin).
Asunto(s)
Apoferritinas/química , Nanopartículas del Metal/química , Fotoquímica , Proteínas Recombinantes/química , Plata/química , Apoferritinas/metabolismo , Humanos , Proteínas Recombinantes/metabolismoRESUMEN
Ferritin is a globular protein that consists of 24 subunits forming a hollow nanocage structure that naturally stores iron oxyhydroxides. Elimination of iron atoms to obtain the empty protein called apoferritin is the first step to use this organic shell as a nanoreactor for different nanotechnological applications. Different protocols have been reported for apoferritin formation, but some are time consuming, others are difficult to reproduce and protein recovery yields are seldom reported. Here we tested several protocols and performed a complete material characterization of the apoferritin products using size exclusion chromatography, UV-vis spectroscopy, inductively coupled plasma optical emission spectrometry and dynamic light scattering. Our best method removes more than 99% of the iron from loaded holoferritin, recovering 70-80% of the original protein as monomeric apoferritin nanocages. Our work shows that pH conditions of the reduction step and the presence and nature of chelating agents affect the efficiency of iron removal. Furthermore, process conditions also seem to have an influence on the monomer:aggregate proportion present in the product. We also demonstrate that iron contents markedly increase ferritin absorbance at 280nm. The influence of iron contents on absorbance at 280nm precludes using this simple spectrophotometric measure for protein determination in ferritiniron complexes. Apoferritin produced following our protocol only requires readily-available, cheap and biocompatible reagents, which makes this process standardizable, scalable and applicable to be used for in vivo applications of ferritin derivatives as well as nanotechnological and biotechnological uses.
Asunto(s)
Apoferritinas/química , Nanoestructuras/química , Nanotecnología/métodos , Cromatografía en Gel , Concentración de Iones de Hidrógeno , Conformación MolecularRESUMEN
We studied the electronic and conductance properties of two thiophene-curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), in which the only structural difference is the position of the sulfur atoms in the thiophene terminal groups. We used electrochemical techniques as well as UV/Vis absorption studies to obtain the values of the HOMO-LUMO band gap energies, showing that molecule 1 has lower values than 2. Theoretical calculations show the same trend. Self-assembled monolayers (SAMs) of these molecules were studied by using electrochemistry, showing that the interaction with gold reduces drastically the HOMO-LUMO gap in both molecules to almost the same value. Single-molecule conductance measurements show that molecule 2 has two different conductance values, whereas molecule 1 exhibits only one. Based on theoretical calculations, we conclude that the lowest conductance value, similar in both molecules, corresponds to a van der Waals interaction between the thiophene ring and the electrodes. The one order of magnitude higher conductance value for molecule 2 corresponds to a coordinate (dative covalent) interaction between the sulfur atoms and the gold electrodes.