Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 8(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34940362

RESUMEN

Chemically directed differentiation of pluripotent stem cells (PSCs) into defined cell types is a potent strategy for creating regenerative tissue models and cell therapies. In vitro observations suggest that physical cues can augment directed differentiation. We recently demonstrated that confining human PSC-derived lung progenitor cells in a tube with a diameter that mimics those observed during lung development results in the alteration of cell differentiation towards SOX2-SOX9+ lung cells. Here we set out to assess the robustness of this geometric confinement effect with respect to different culture parameters in order to explore the corresponding changes in cell morphometry and determine the feasibility of using such an approach to enhance directed differentiation protocols. Culture of progenitor cells in polydimethylsiloxane (PDMS) tubes reliably induced self-organization into tube structures and was insensitive to a variety of extracellular matrix coatings. Cellular morphology and differentiation status were found to be sensitive to the diameter of tube cells that were cultured within but not to seeding density. These data suggest that geometric cues impose constraints on cells, homogenize cellular morphology, and influence fate status.

2.
Adv Drug Deliv Rev ; 161-162: 90-109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32835746

RESUMEN

Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Pulmón/fisiología , Ingeniería de Tejidos/métodos , Animales , Embriología , Humanos , Pulmón/crecimiento & desarrollo , Ratones , Células Madre Pluripotentes/citología , Transducción de Señal/fisiología
3.
Biomaterials ; 254: 120128, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32474250

RESUMEN

During organogenesis groups of differentiating cells self-organize into a series of structural intermediates with defined architectural forms. Evidence is emerging that such architectural forms are important in guiding cell fate, yet in vitro methods to guide cell fate have focused primarily on un-patterned exposure of stems cells to developmentally relevant chemical cues. We set out to ask if organizing differentiating lung progenitors into developmentally relevant structures could be used to influence differentiation status. Specifically, we use elastomeric substrates to guide self-assembly of human pluripotent stem cell-derived lung progenitors into developmentally-relevant sized tubes and assess the impact on differentiation. Culture in 100 µm tubes reduced the percentage of SOX2+SOX9+ cells and reduced proximal fate potential compared to culture in 400 µm tubes or on flat surfaces. Cells in 100 µm tubes curved to conform to the tube surface and experienced increased cellular tension and reduced elongation. Pharmacologic disruption of tension through inhibition of ROCK, myosin II activity and actin polymerization in tubes resulted in maintenance of SOX2+SOX9+ populations. Furthermore, this effect required canonical WNT signaling. This data suggests that structural forms, when developmentally relevant, can drive fate choice during directed differentiation via a tension-based canonical WNT dependent mechanism.


Asunto(s)
Células Madre Pluripotentes , Diferenciación Celular , Humanos , Pulmón , Vía de Señalización Wnt
4.
Sci Rep ; 9(1): 12034, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427611

RESUMEN

Replacement of large tracheal defects remains an unmet clinical need. While recellularization of acellular tracheal grafts appeared to be a viable pathway, evidence from the clinic suggests otherwise. In hindsight, complete removal of chondrocytes and repopulation of the tracheal chondroid matrix to achieve functional tracheal cartilage may have been unrealistic. In contrast, the concept of a hybrid graft whereby the epithelium is removed and the immune-privileged cartilage is preserved is a radically different path with initial reports indicating potential clinical success. Here, we present a novel approach using a double-chamber bioreactor to de-epithelialize tracheal grafts and subsequently repopulate the grafts with exogenous cells. A 3 h treatment with sodium dodecyl sulfate perfused through the inner chamber efficiently removes the majority of the tracheal epithelium while the outer chamber, perfused with growth media, keeps most (68.6 ± 7.3%) of the chondrocyte population viable. De-epithelialized grafts support human bronchial epithelial cell (BEAS-2B) attachment, viability and growth over 7 days. While not without limitations, our approach suggests value in the ultimate use of a chimeric allograft with intact donor cartilage re-epithelialized with recipient-derived epithelium. By adopting a brief and partial decellularization approach, specifically removing the epithelium, we avoid the need for cartilage regeneration.


Asunto(s)
Mucosa Respiratoria , Ingeniería de Tejidos , Tráquea/trasplante , Trasplante Homólogo , Aloinjertos , Animales , Supervivencia Celular , Condrocitos/metabolismo , Matriz Extracelular , Técnica del Anticuerpo Fluorescente , Fenómenos Mecánicos , Repitelización , Medicina Regenerativa , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/ultraestructura , Porcinos , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Tráquea/ultraestructura
5.
Biomater Sci ; 6(2): 292-303, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29327014

RESUMEN

There is a need to establish in vitro lung alveolar epithelial culture models to better understand the fundamental biological mechanisms that drive lung diseases. While primary alveolar epithelial cells (AEC) are a useful option to study mature lung biology, they have limited utility in vitro. Cells that survive demonstrate limited proliferative capacity and loss of phenotype over the first 3-5 days in traditional culture conditions. To address this limitation, we generated a novel physiologically relevant cell culture system for enhanced viability and maintenance of phenotype. Here we describe a method utilizing e-beam lithography, reactive ion etching, and replica molding to generate poly-dimethylsiloxane (PDMS) substrates containing hemispherical cavities that mimic the architecture and size of mouse and human alveoli. Primary AECs grown on these cavity-containing substrates form a monolayer that conforms to the substrate enabling precise control over cell sheet architecture. AECs grown in cavity culture conditions remain viable and maintain their phenotype over one week. Specifically, cells grown on substrates consisting of 50 µm diameter cavities remained 96 ± 4% viable and maintained expression of surfactant protein C (SPC), a marker of type 2 AEC over 7 days. While this report focuses on primary lung alveolar epithelial cells, our culture platform is potentially relevant and useful for growing primary cells from other tissues with similar cavity-like architecture and could be further adapted to other biomimetic shapes or contours.


Asunto(s)
Materiales Biomiméticos/química , Cultivo Primario de Células/métodos , Alveolos Pulmonares/citología , Mucosa Respiratoria/citología , Andamios del Tejido/química , Animales , Materiales Biomiméticos/efectos adversos , Línea Celular Tumoral , Células Cultivadas , Dimetilpolisiloxanos/química , Humanos , Ratones , Ratones Endogámicos C57BL , Andamios del Tejido/efectos adversos
6.
Biofabrication ; 8(3): 035018, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27631341

RESUMEN

In the past decade, it has been well recognised that the tumour microenvironment contains microenvironmental components such as hypoxia that significantly influence tumour cell behaviours such, invasiveness and therapy resistance, all of which provide new targets for studying cancer biology and developing anticancer therapeutics. In response, a large number of two-dimensional and three-dimensional (3D) in vitro tumour models have been developed to recapitulate different aspects of the tumour microenvironment and enable the study of related biological questions. While more complex models enable new biological insight, such models often involve time-consuming and complex fabrication or analysis processes, which limit their adoption by the broader cancer biology community. To address this, we recently reported the development of a new platform that enables easy assembly and analysis of 3D tumour cultures, the tissue roll for analysis of cellular environment response (TRACER). The TRACER platform enables recapitulation of many spatial aspects of the tumour microenvironment to ask a variety of questions, however its original design contains only one cell type. In contrast tumours in vivo often contain a neoplastic and stromal compartment. To expand the types of questions the TRACER system is useful for asking, here we present a strategy to pattern distinct cell type domains into TRACER layers using a custom-built gelatin-dispensing pen. The pen allows deposition of a temporary gelatin barrier into the TRACER scaffold to define domain boundaries between cell populations. The gelatin can be melted away after cell seeding to allow interaction of cell populations from adjacent domains. Our device offers a simple strategy to generate complex multi-cell type tumour cultures for analysis of fundamental biology and drug development applications.


Asunto(s)
Bioimpresión/métodos , Gelatina/química , Andamios del Tejido/química , Animales , Bioimpresión/instrumentación , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Ratones , Microscopía Electrónica de Rastreo , Modelos Biológicos , Células 3T3 NIH , Polímeros/química , Microambiente Tumoral
7.
Biomater Sci ; 3(1): 121-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26214196

RESUMEN

Epithelial tissues are a critical component of all tubular organs. Engineering artificial epithelium requires an understanding of the polarization of epithelia: both apicobasal and in a planar fashion. Air liquid interface (ALI) culture is typically used to generate apicobasal polarized airway epithelium in vitro; however, this approach does not provide any signalling cues to induce morphological planar polarization of the generated epithelial layer. Here we describe a microgrooved gelatin hydrogel insert that can induce alignment of confluent epithelial cell sheets under ALI conditions to induce both apicobasal and morphologically planar polarized epithelium. Microgrooves are imprinted into the surface of the gelatin insert using elastomeric stamps moulded from a diffraction grating film and gels are stabilized by crosslinking with glutaraldehyde. We show that microgrooved gelatin inserts produce alignment of 3T3 fibroblasts and a number of epithelial cell lines (ARPE-19, BEAS2B and IMCD3 cells). Furthermore, we show that BEAS2B apicobasally polarize and form a similar density of cilia on both gelatin inserts and standard transwell filters used for ALI culture but that as apicobasal polarization progresses cell alignment on the grooves is lost. Our method provides a simple strategy that can easily be adopted by labs without microfabrication expertise for manipulating epithelial organization in transwell culture and studying the interplay of various polarization forces.


Asunto(s)
Polaridad Celular/fisiología , Epitelio/química , Geles/metabolismo , Técnicas de Cultivo de Célula/métodos , Línea Celular , Permeabilidad de la Membrana Celular , Cilios , Células Epiteliales/citología , Epitelio/metabolismo , Geles/química , Humanos , Microtecnología/métodos
8.
Biotechnol Bioeng ; 111(12): 2537-48, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24889796

RESUMEN

Grooved substrates are commonly used to guide cell alignment and produce in vitro tissues that mimic certain aspects of in vivo cellular organization. These more sophisticated tissues provide valuable in vitro models for testing drugs and for dissecting out molecular mechanisms that direct tissue organization. To increase the accessibility of these tissue models we describe a simple and yet reproducible strategy to produce 1 µm-spaced grooved well plates suitable for conducting automated analysis of cellular responses. We characterize the alignment of four human cell types: retinal epithelial cells, umbilical vein endothelial cells, foreskin fibroblasts, and human pluripotent stem-cell-derived cardiac cells on grooves. We find all cells align along the grooves to differing extents at both sparse and confluent densities. To increase the sophistication of in vitro tissue organization possible, we also created hybrid substrates with controlled patterns of microgrooved and flat regions that can be identified in real-time using optical microscopy. Using our hybrid patterned surfaces we explore: (i) the ability of neighboring cells to provide a template to organize surrounding cells that are not directly exposed to grooved topographic cues, and (ii) the distance over which this template effect can operate in confluent cell sheets. We find that in fibroblast sheets, but not epithelial sheets, cells aligned on grooves can direct alignment of neighboring cells in flat regions over a limited distance of approximately 200 µm. Our hybrid surface plate provides a novel tool for studying the collective response of groups of cells exposed to differential topographical cues.


Asunto(s)
Comunicación Celular/fisiología , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ingeniería de Tejidos/instrumentación , Línea Celular , Células Cultivadas , Diseño de Equipo , Humanos , Propiedades de Superficie
9.
J Biomed Biotechnol ; 2012: 982971, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22523471

RESUMEN

Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium.


Asunto(s)
Regeneración/fisiología , Mucosa Respiratoria/fisiología , Ingeniería de Tejidos , Animales , Humanos
10.
Tissue Eng Part C Methods ; 18(8): 614-23, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22332979

RESUMEN

Tracheal reconstruction is indicated in cases of malignancy, traumatic injury, and subglottic or tracheal stenosis. Recent progress in airway transplantation has provided renewed optimism for potential solutions for defects involving more than half of the tracheal length in adults or one-third of the tracheal length in children. Biologic scaffolds derived from decellularized tissues and organs have shown great promise in tracheal allotransplantation, and cyclical decellularization techniques have been hypothesized as abrogating the need for immunosuppressive therapy. In this study, we performed a direct comparison of three decellularization protocols (Protocols A, B, and C) previously described in the literature, two of which were described in tracheal tissue (Protocols A and B). We concentrated on the immunogenicity within the epithelium and mucosa, quantified and qualified the extracellular matrix (ECM) components, and performed compliance measurements on large circumferential decellularized tracheal scaffolds following cyclical decellularization techniques using all three protocols. Quantitative measurements of glycosaminoglycans (GAGs) showed a significant decrease in the mucosal component following 17 cycles of all 3 protocols as well as a significant decrease of GAGs in the cartilaginous component following cycles 1, 9, and 17 of Protocol A and cycle 17 of Protocol C. Compliance measurements were also shown to be different between the protocols, with grafts becoming more compliant at physiologic pressures after cyclical decellularization with Protocols A and B and slightly less compliant but remaining similar to native trachea using Protocol C. Positive staining for anti-major histocompatibility complex Class I (anti-MHCI) and anti-MHCII remained within the submucosal glandular components despite multiple cycles of decellularization using all three protocols. This study illustrated that there are significant differences in ECM composition and resultant structural integrity of decellularized tracheal scaffolds depending on the decellularization protocol. Protocol B was shown to maintain the GAGs components despite an increase in tracheal compliance, while Protocol C decreases GAGs components following multiple cycles, despite showing a tracheal compliance resembling that of the native trachea at physiologic airway pressures.


Asunto(s)
Técnicas de Cultivo de Célula , Matriz Extracelular/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido , Tráquea/metabolismo , Animales , Bioquímica/métodos , Técnicas de Cultivo de Célula/métodos , Colágeno/química , Elastina/química , Glicosaminoglicanos/química , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase II/química , Inmunohistoquímica/métodos , Masculino , Microscopía Electrónica de Rastreo/métodos , Porcinos , Tráquea/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA