Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(2): 422-428, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36602464

RESUMEN

A broad effort is underway to understand and harness the interaction between superconductors and spin-active color centers with an eye on hybrid quantum devices and novel imaging modalities of superconducting materials. Most work, however, overlooks the interplay between either system and the environment created by the color center host. Here we use a diamond scanning probe to investigate the spin dynamics of a single nitrogen-vacancy (NV) center proximal to a superconducting film. We find that the presence of the superconductor increases the NV spin coherence lifetime, a phenomenon we tentatively rationalize as a change in the electric noise due to a superconductor-induced redistribution of charge carriers near induced redistribution of charge carriers near the NV. We then build on these findings to demonstrate transverse-relaxation-time-weighted imaging of the superconductor film. These results shed light on the dynamics governing the spin coherence of shallow NVs, and promise opportunities for new forms of noise spectroscopy and imaging of superconductors.

2.
Phys Rev Lett ; 127(12): 126604, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597109

RESUMEN

We investigate rectified currents in response to oscillating electric fields in systems lacking inversion and time-reversal symmetries. These currents, in second-order perturbation theory, are inversely proportional to the relaxation rate, and, therefore, naively diverge in the ideal clean limit. Employing a combination of the nonequilibrium Green function technique and Floquet theory, we show that this is an artifact of perturbation theory, and that there is a well-defined periodic steady state akin to Rabi oscillations leading to finite rectified currents in the limit of weak coupling to a thermal bath. In this Rabi regime the rectified current scales as the square root of the radiation intensity, in contrast with the linear scaling of the perturbative regime, allowing us to readily diagnose it in experiments. More generally, our description provides a smooth interpolation from the ideal periodic Gibbs ensemble describing the Rabi oscillations of a closed system to the perturbative regime of rapid relaxation due to strong coupling to a thermal bath.

3.
Phys Rev Lett ; 127(5): 056601, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397225

RESUMEN

We show that Weyl Fermi arcs are generically accompanied by a divergence of the surface Berry curvature scaling as 1/k^{2}, where k is the distance to a hot line in the surface Brillouin zone that connects the projection of Weyl nodes with opposite chirality, but which is distinct from the Fermi arc itself. Such surface Berry curvature appears whenever the bulk Weyl dispersion has a velocity tilt toward the surface of interest. This divergence is reflected in a variety of Berry curvature mediated effects that are readily accessible experimentally and, in particular, leads to a surface Berry curvature dipole that grows linearly with the thickness of a slab of a Weyl semimetal material in the limit of the long lifetime of surface states. This implies the emergence of a gigantic contribution to the nonlinear Hall effect in such devices.

4.
Phys Rev Lett ; 124(9): 097604, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32202902

RESUMEN

We develop a proposal to realize a widely tunable and clean quantum phase transition in bilayer graphene between two paradigmatic fractionalized phases of matter: the Moore-Read fractional quantum Hall state and the composite Fermi liquid metal. This transition can be realized at total fillings ν=±3+1/2 and the critical point can be controllably accessed by tuning either the interlayer electric bias or the perpendicular magnetic field values over a wide range of parameters. We study the transition numerically within a model that contains all leading single particle corrections to the band structure of bilayer graphene and includes the fluctuations between the n=0 and n=1 cyclotron orbitals of its zeroth Landau level to delineate the most favorable region of parameters to experimentally access this unconventional critical point. We also find evidence for a new anisotropic gapless phase stabilized near the level crossing of n=0/1 orbits.

5.
Sci Adv ; 4(9): eaat8742, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30225370

RESUMEN

Half-filled Landau levels host an emergent Fermi liquid that displays instability toward pairing, culminating in a gapped even-denominator fractional quantum Hall ground state. While this pairing may be probed by tuning the polarization of carriers in competing orbital and spin degrees of freedom, sufficiently high quality platforms offering such tunability remain few. We explore the ground states at filling factor ν = 5/2 in ZnO-based two-dimensional electron systems through a forced intersection of opposing spin branches of Landau levels taking quantum numbers N = 1 and 0. We reveal a cascade of phases with distinct magnetotransport features including a gapped phase polarized in the N = 1 level and a compressible phase in N = 0, along with an unexpected Fermi liquid, a second gapped, and a strongly anisotropic nematic-like phase at intermediate polarizations when the levels are near degeneracy. The phase diagram is produced by analyzing the proximity of the intersecting levels and highlights the excellent reproducibility and controllability that ZnO offers for exploring exotic fractionalized electronic phases.

6.
Nat Commun ; 9(1): 1766, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720630

RESUMEN

Samarium hexaboride is a classic three-dimensional mixed valence system with a high-temperature metallic phase that evolves into a paramagnetic charge insulator below 40 K. A number of recent experiments have suggested the possibility that the low-temperature insulating bulk hosts electrically neutral gapless fermionic excitations. Here we show that a possible ground state of strongly correlated mixed valence insulators-a composite exciton Fermi liquid-hosts a three dimensional Fermi surface of a neutral fermion, that we name the "composite exciton." We describe the mechanism responsible for the formation of such excitons, discuss the phenomenology of the composite exciton Fermi liquids and make comparison to experiments in SmB6.

7.
Phys Rev Lett ; 121(24): 246403, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608737

RESUMEN

Transitions between topologically distinct electronic states have been predicted in different classes of materials and observed in some. A major goal is the identification of measurable properties that directly expose the topological nature of such transitions. Here, we focus on the giant Rashba material bismuth tellurium iodine which exhibits a pressure-driven phase transition between topological and trivial insulators in three dimensions. We demonstrate that this transition, which proceeds through an intermediate Weyl semimetallic state, is accompanied by a giant enhancement of the Berry curvature dipole which can be probed in transport and optoelectronic experiments. From first-principles calculations, we show that the Berry dipole-a vector along the polar axis of this material-has opposite orientations in the trivial and topological insulating phases and peaks at the insulator-to-Weyl critical points, at which the nonlinear Hall conductivity can increase by over 2 orders of magnitude.

8.
Phys Rev Lett ; 115(21): 216806, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26636867

RESUMEN

It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry. However, in this work, we demonstrate that Hall-like currents can occur in second-order response to external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose form is determined by point group symmetry. We discus optimal conditions to observe this effect and propose candidate two- and three-dimensional materials, including topological crystalline insulators, transition metal dichalcogenides, and Weyl semimetals.

9.
Phys Rev Lett ; 115(16): 166805, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26550895

RESUMEN

We report on an exact diagonalization study of fractional quantum Hall states at a filling factor of ν=2/3 in a system with a fourfold degenerate n=0 Landau level and SU(4) symmetric Coulomb interactions. Our investigation reveals previously unidentified SU(3) and SU(4) singlet ground states which appear at a flux quantum shift 2 when a spherical geometry is employed and lie outside the established composite-fermion or multicomponent Halperin state patterns. We evaluate the two-particle correlation functions of these states and discuss quantum phase transitions in graphene between singlet states with a different number of components as the magnetic field strength is increased.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA