Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(18): 22612-22640, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33420935

RESUMEN

Multiproxy approach based on textural, mineralogical, geochemical, and microfaunal analyses on a 176-cm-long core (SP8) has been applied to reconstruct the Holocene paleoenvironmental changes and disentangling natural vs. anthropogenic variability in Marambaia Cove of the Sepetiba Bay (SE Brazil). Sepetiba Bay became a lagoonal system due to the evolution and development of the Marambaia barrier island during the Holocene and the presence of an extensive river basin. Elemental concentrations from pre-anthropogenic layers from the nearby SP7 core have been used to estimate the baseline elemental concentrations for this region and to determine metals enrichment factors (EF), pollution load index (PLI), and sediment pollution index (SPI). Record of the core SP8 provides compelling evidence of the lagoon evolution differentiating the effects of potentially toxic elements (PTEs) under natural vs. anthropic forcing in the last ~ 9.5 ka BP. The study area was probably part of coastal sand ridges between ≈ 9.5 and 7.8 ka BP (radiocarbon date). Events of wash over deposited allochthonous material and organic matter between ≈ 8.6 and 7.8 ka. Climatic event 8.2 ka BP, in which the South American Summer Monsoon was intensified in Brazil causing higher rainfall and moisture was scored by an anoxic event. Accumulation of organic matter resulted in oxygen depletion and even anoxia in the sediment activating biogeochemical processes that resulted in the retention of potentially toxic elements (PTEs). After ≈ 7.8 ka BP at the onset of the Holocene sea-level rise, a marine incursion flooded the Marambaia Cove area (previously exposed to subaerial conditions). Environmental conditions became favorable for the colonization of benthic foraminifera. The Foram Stress Index (FSI) and Exp(H'bc) indicate that the environmental conditions turned from bad to more favorable since ≈ 7.8 ka BP, with maximum health reached at ≈ 5 ka BP, during the mid-Holocene relative sea-level highstand. Since then, the sedimentological and ecological proxies suggest that the system evolved to an increasing degree of confinement. Since ≈ 1975 AD, a sharp increase of silting, Cd, Zn, and organic matter also induced by anthropic activities caused major changes in foraminiferal assemblages with a significant increase of Ammonia/Elphidium Index (AEI), EF, and SPI values and decreasing of FSI and Exp(H'bc) (ecological indicators) demonstrating an evolution from "moderately polluted" to "heavily polluted" environment (bad ecological conditions), under variable suboxic conditions. Thus, core SP8 illustrates the most remarkable event of anthropogenic forcing on the geochemistry of the sediments and associated pollution loads and its negative effect on benthic organisms.


Asunto(s)
Foraminíferos , Contaminantes Químicos del Agua , Bahías , Brasil , Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis
2.
Environ Monit Assess ; 193(2): 100, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33515075

RESUMEN

This work sheds light on the recent evolution (≈1915-2015 AD) of Sepetiba Bay (SB; SE Brazil), a subtropical coastal lagoon on the southwestern Brazilian coast, based on a multiproxy approach. Variations in geochemical proxies as well as textural, mineralogical and geochronological data allow us to reconstruct temporally constrained changes in the depositional environments along the SP3 sediment core collected from the central area of SB. At the beginning of the twentieth century, the substrate of the study site was composed of coarse-grained sediments, largely sourced from felsic rocks of proximal areas and deposited under moderate to strong shallow marine hydrodynamics. Since the 1930s, the study area has undergone silting and received high contributions of materials from mafic rocks sourced by river basins. The SP3 core reveals a shallowing-upward sequence due to human-induced silting with significant eutrophication since the middle of 1970, which was caused by significant enrichment of organic matter that was provided by not only marine productivity but also continental and human waste. In addition, the sediments deposited after 1980 exhibit significant enrichment and are moderately to strongly polluted by Cd and Zn. Metals were dispersed by hydrodynamics from the source areas, but diagenetic processes promoted their retention in the sediments. The potential ecological risk index (PERI) indicates that the level of high (considerable) ecological risk is in sediments deposited in ≈1995 (30-32 cm; subsurface). The applied methodology allowed us to understand the thickness of the bottom sediment affected by eutrophication processes and contaminants. Identical methodologies can be applied in other coastal zones, and can provide useful information to decision makers and stakeholders that manage those areas.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Bahías , Brasil , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos , Humanos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
3.
Mar Pollut Bull ; 158: 111449, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32753225

RESUMEN

The ecological quality status of the NE region of the Guanabara Bay (SE Brazil), one of the most important Brazilian embayments, is evaluated. For this purpose, sediment samples from in the inner of the Guanabara Bay (GB) were collected and analyzed (grain-size, mineralogy, geochemistry and living foraminifera). In this study, it is hypothesized that the potentially toxic elements (PTEs) concentrations, in solution and associated with organic matter (OMPTEs, potential nutrient source), may represent two potential pathways to impact benthic foraminifers. A multiproxy approach applied to complex statistical analyses and ecological indexes shows that the study area is, in general, eutrophic (with high organic matter and low oxygen content), polluted by PTEs and oil. As a consequence, foraminifera are not abundant and their assemblages are poorly diversified and dominated by some stress-tolerant species (i.e., Ammonia tepida, Quinqueloculina seminula, Cribroelphidium excavatum). The results allow us to identify a set of species sensitive to eutrophication and OMPTEs. Factors such as the increase of organic matter contents and OMPTEs and, in particular of Zn, Cd and Pb, the oxygen depletion and the presence of oil, altogether contribute to a marked reduction in the abundance and diversity of foraminifera. Ammonia-Elphidium Index and the Foram Stress Index confirm that the NE zone of GB is, in general, "heavily polluted", with "poor ecological quality status" and experiences suboxic to anoxic conditions. In light of it, special attention from public authorities and policymakers is required in order to take immediate actions to enable its environmental recovery.


Asunto(s)
Foraminíferos , Bahías , Brasil , Monitoreo del Ambiente , Sedimentos Geológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA