Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36363016

RESUMEN

Iron niobates, pure and substituted with copper (Fe1-xCuxNbO4 with x = 0-0.15), were prepared by the solid-state method and characterized by X-ray diffraction, Raman spectroscopy, and magnetic measurements. The results of the structural characterizations revealed the high solubility of Cu ions in the structure and better structural stability compared to the pure sample. The analysis of the magnetic properties showed that the antiferromagnetic-ferromagnetic transition was caused by the insertion of Cu2+ ions into the FeNbO4 structure. The pure FeNbO4 structure presented an antiferromagnetic ordering state, with a Néel temperature of approximately 36.81K. The increase in substitution promoted a change in the magnetic ordering, with the state passing to a weak ferromagnetic order with a transition temperature (Tc) higher than the ambient temperature. The origin of the ferromagnetic ordering could be attributed to the increase in super-exchange interactions between Fe/Cu ions in the Cu2+-O-Fe3+ chains and the formation of bound magnetic polarons in the oxygen vacancies.

3.
Materials (Basel) ; 14(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923161

RESUMEN

Effects of the incorporation of Cr, Ni, Co, Ag, Al, Ni and Pt cations in titanate nanotubes (NTs) were examined on the NOx conversion. The structural and morphological characterizations evidenced that the ion-exchange reaction of Cr, Co, Ni and Al ions with the NTs produced catalysts with metals included in the interlayer regions of the trititanate NTs whereas an assembly of Ag and Pt nanoparticles were either on the nanotubes surface or inner diameters through an impregnation process. Understanding the role of the different metal cations intercalated or supported on the nanotubes, the optimal selective catalytic reduction of NOx by CO reaction (SCR) conditions was investigated by carrying out variations in the reaction temperature, SO2 and H2O poisoning and long-term stability runs. Pt nanoparticles on the NTs exhibited superior activity compared to the Cr, Co and Al intercalated in the nanotubes and even to the Ag and Ni counterparts. Resistance against SO2 poisoning was low on NiNT due to the trititanate phase transformation into TiO2 and also to sulfur deposits on Ni sites. However, the interaction between Pt2+ from PtOx and Ti4+ in the NTs favored the adsorption of both NOx and CO enhancing the catalytic performance.

4.
Materials (Basel) ; 13(5)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131394

RESUMEN

The presence of synthetic dyes in water causes serious environmental issues owing to the low water quality, toxicity to environment and human carcinogenic effects. Adsorption has emerged as simple and environmental benign processes for wastewater treatment. This work reports the use of porous Fe-based composites as adsorbents for Acid Red 66 dye removal in an aqueous solution. The porous FeC and Fe/FeC solids were prepared by hydrothermal methods using iron sulfates and sucrose as precursors. The physicochemical properties of the solids were evaluated through X-ray diffraction (XRD), Scanning electron microscopy coupled with Energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared s (FTIR), Raman and Mössbauer spectroscopies, nitrogen adsorption-desorption isotherms, Electron Paramagnetic Resonance (EPR) and magnetic saturation techniques. Results indicated that the Fe species holds magnetic properties and formed well dispersed Fe3O4 nanoparticles on a carbon layer in FeC nanocomposite. Adding iron to the previous solid resulted in the formation of γ-Fe2O3 coating on the FeC type structure as in Fe/FeC composite. The highest dye adsorption capacity was 15.5 mg·g-1 for FeC nanocomposite at 25 °C with the isotherms fitting well with the Langmuir model. The removal efficiency of 98.4% was obtained with a pristine Fe sample under similar experimental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA