Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biotechnol ; 306S: 100006, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-34112369

RESUMEN

Drug manufacturing processes must consistently deliver safe and effective product. A key part of achieving this is process validation utilizing Quality by Design (QbD) principles. To meet process validation requirements, process characterization (PC) studies are often performed to expand process understanding and establish an appropriate control strategy that enables the manufacturing process to consistently deliver a target product profile. Two key elements of the control strategy resulting from PC work are a list of critical process parameters (CPPs) and defined operating ranges (ORs). These are frequently derived based on mathematical models describing the relationship between process parameters and critical quality attributes (CQAs). Risk assessment and design of experiments (DOE) techniques are effectively deployed in the industry to identify parameters to study and build process understanding. However, traditional data analysis techniques do not fully utilize the data produced by these studies. In particular, stepwise regression algorithms based on p-values are prone to generate false positives and overfit data, potentially leading to unnecessarily complex control strategies. Many of the deficiencies of traditional stepwise regression can be alleviated by applying cross validation to stepwise regression algorithms, as well as Monte Carlo simulations to estimate model accuracy and predict CQA distributions. These methods can greatly enhance process understanding and assist in the selection of CPPs. A series of PC studies were performed in bioreactors to evaluate a process to produce a recombinant monoclonal antibody. The studies examined process parameters such as dissolved oxygen, pH, temperature, inoculation density, as well as cell density at two key process steps. The resulting data were analyzed using several Monte Carlo based methods. First, cross validation was used to determine model size and select parameters to be included in the model. Next, Monte Carlo cross validation was used to compare the accuracy of different models. Finally, simulated CQA profiles were generated to validate proposed ORs. This workflow provides greater process understanding based on a given PC data set and provides higher statistical confidence in both CPP selection and establishment of a control strategy.

2.
Biotechnol Bioeng ; 106(5): 774-83, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20564614

RESUMEN

IgG1 antibodies produced in Chinese hamster ovary (CHO) cells are heavily alpha1,6-fucosylated, a modification that reduces antibody-dependent cellular cytotoxicity (ADCC) and can inhibit therapeutic antibody function in vivo. Addition of fucose is catalyzed by Fut8, a alpha1,6-fucosyltransferase. FUT8(-/-) CHO cell lines produce completely nonfucosylated antibodies, but the difficulty of recapitulating the knockout in protein-production cell lines has prevented the widespread adoption of FUT8(-/-) cells as hosts for antibody production. We have created zinc-finger nucleases (ZFNs) that cleave the FUT8 gene in a region encoding the catalytic core of the enzyme, allowing the functional disruption of FUT8 in any CHO cell line. These reagents produce FUT8(-/-) CHO cells in 3 weeks at a frequency of 5% in the absence of any selection. Alternately, populations of ZFN-treated cells can be directly selected to give FUT8(-/-) cell pools in as few as 3 days. To demonstrate the utility of this method in bioprocess, FUT8 was disrupted in a CHO cell line used for stable protein production. ZFN-derived FUT8(-/-) cell lines were as transfectable as wild-type, had similar or better growth profiles, and produced equivalent amounts of antibody during transient transfection. Antibodies made in these lines completely lacked core fucosylation but had an otherwise normal glycosylation pattern. Cell lines stably expressing a model antibody were made from wild-type and ZFN-generated FUT8(-/-) cells. Clones from both lines had equivalent titer, specific productivity distributions, and integrated viable cell counts. Antibody titer in the best ZFN-generated FUT8(-/-) cell lines was fourfold higher than in the best-producing clones of FUT8(-/-) cells made by standard homologous recombination in a different CHO subtype. These data demonstrate the straightforward, ZFN-mediated transfer of the Fut8- phenotype to a production CHO cell line without adverse phenotypic effects. This process will speed the production of highly active, completely nonfucosylated therapeutic antibodies.


Asunto(s)
ADN/metabolismo , Desoxirribonucleasas/metabolismo , Fucosiltransferasas/genética , Eliminación de Gen , Técnicas Genéticas , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Biotecnología/métodos , Células CHO , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus , Dedos de Zinc
3.
Cell ; 118(5): 545-53, 2004 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-15339660

RESUMEN

Methylation of arginine residues within histone H3 has been linked to active transcription. This modification appears on the estrogen-regulated pS2 promoter when the CARM1 methyltransferase is recruited during transcriptional activation. Here we describe a process, deimination, that converts histone arginine to citrulline and antagonizes arginine methylation. We show that peptidyl arginine deiminase 4 (PADI4) specifically deiminates, arginine residues R2, R8, R17, and R26 in the H3 tail. Deimination by PADI4 prevents arginine methylation by CARM1. Dimethylation of arginines prevents deimination by PADI4 although monomethylation still allows deimination to take place. In vivo targeting experiments on an endogenous promoter demonstrate that PADI4 can repress hormone receptor-mediated gene induction. Consistent with a repressive role for PADI4, this enzyme is recruited to the pS2 promoter following hormone induction when the gene is transcriptionally downregulated. The recruitment of PADI4 coincides with deimination of the histone H3 N-terminal tail. These results define deimination as a novel mechanism for antagonizing the transcriptional induction mediated by arginine methylation.


Asunto(s)
Arginina/metabolismo , Citrulina/metabolismo , Histonas/metabolismo , Iminas/metabolismo , Activación Transcripcional/genética , Línea Celular Tumoral , Regulación de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Histonas/genética , Humanos , Hidrolasas/metabolismo , Metilación , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína/genética , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas/metabolismo , Factor Trefoil-1 , Proteínas Supresoras de Tumor
4.
Cancer Res ; 63(24): 8968-76, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14695215

RESUMEN

Angiogenic factors are necessary for tumor proliferation and thus are attractive therapeutic targets. In this study, we have used engineered zinc finger protein (ZFP) transcription factors (TFs) to repress expression of vascular endothelial growth factor (VEGF)-A in human cancer cell lines. We create potent transcriptional repressors by fusing a designed ZFP targeted to the VEGF-A promoter with either the ligand-binding domain of thyroid hormone receptor alpha or its viral relative, vErbA. Moreover, this ZFP-vErbA repressor binds its intended target site in vivo and mediates the specific deacetylation of histones H3 and H4 at the targeted promoter, a result that emulates the natural repression mechanism of these domains. The potential therapeutic relevance of ZFP-mediated VEGF-A repression was addressed using the highly tumorigenic glioblastoma cell line U87MG. Despite the aberrant overexpression of VEGF-A in this cell line, engineered ZFP TFs were able to repress the expression of VEGF-A by >20-fold. The VEGF-A levels observed after ZFP TF-mediated repression were comparable to those of a nonangiogenic cancer line (U251MG), suggesting that the degree of repression obtained with the ZFP TF would be sufficient to suppress tumor angiogenesis. Thus, engineered ZFP TFs are shown to be potent regulators of gene expression with therapeutic promise in the treatment of disease.


Asunto(s)
Glioblastoma/metabolismo , Glioblastoma/terapia , Factores de Transcripción/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Dedos de Zinc/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/irrigación sanguínea , Glioblastoma/genética , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proteínas Oncogénicas v-erbA/genética , Proteínas Oncogénicas v-erbA/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transfección , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
5.
Proc Natl Acad Sci U S A ; 100(21): 11997-2002, 2003 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-14514889

RESUMEN

Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc/genética , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , Quinasa de Punto de Control 2 , ADN/genética , ADN/metabolismo , Daño del ADN , Regulación Enzimológica de la Expresión Génica , Genoma Humano , Humanos , Regiones Promotoras Genéticas , Ingeniería de Proteínas , Proteínas Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
6.
Mol Cell ; 11(4): 1043-54, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12718889

RESUMEN

p300 and CREB binding protein can both activate and repress transcription. Here, we locate the CRD1 transcriptional repression domain between residues 1017 and 1029 of p300. This region contains two copies of the sequence psiKxE that are modified by the ubiquitin-like protein SUMO-1. Mutations that reduce SUMO modification increase p300-mediated transcriptional activity and expression of a SUMO-specific protease or catalytically inactive Ubc9 relieved repression, demonstrating that p300 repression was mediated by SUMO conjugation. SUMO-modified CRD1 domain bound HDAC6 in vitro, and p300 repression was relieved by histone deacetylase inhibition and siRNA-mediated ablation of HDAC6 expression. These results reveal a mechanism controlling p300 function and suggest that SUMO-dependent repression is mediated by recruitment of HDAC6.


Asunto(s)
Células Eucariotas/metabolismo , Genes Reguladores/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteína SUMO-1/metabolismo , Transactivadores/metabolismo , Enzimas Ubiquitina-Conjugadoras , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Estructuras del Núcleo Celular/genética , Estructuras del Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Células HeLa , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ligasas/genética , Ligasas/metabolismo , Mutación/genética , Proteínas Nucleares/genética , Estructura Terciaria de Proteína/genética , ARN Interferente Pequeño , Proteínas Represoras/genética , Proteína SUMO-1/genética , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Cell Cycle ; 1(5): 343-50, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12461297

RESUMEN

The tumor suppressors p300 and CREB-binding protein (CBP) are both multifunctional transcriptional coactivators. We have previously found that the cyclin dependent kinase (CDK) inhibitor p21(WAF1/CIP1) can stimulate transactivation by p300 and CBP through inhibiting transcriptional repression by a discrete domain within these proteins termed CRD1. Given the large number of p300/CBP associated functions, it is unlikely that p21 regulates the expression of every gene under their control, however. Here we have investigated the factors that help determine this specificity. We have discovered that while CRD1 can repress the activity of p300 at multiple promoters, induction of transcription by p21 though this motif is highly variable. Analysis of this effect revealed that p21 inducibility is determined by sequences flanking the TATA box. Significantly, p21 regulation of CRD1 domain function is independent of Cyclin /CDK inhibition suggesting a novel function of this protein. p21 does not interact directly with the CRD1 motif, however. These results give further insight into how regulators of cell growth and tumorigenesis, such as p21, can specifically target and induce the expression of select groups of genes.


Asunto(s)
Quinasas Ciclina-Dependientes/fisiología , Ciclinas/fisiología , Proteínas Nucleares/química , Regiones Promotoras Genéticas , Transactivadores/química , Activación Transcripcional , Secuencias de Aminoácidos , Secuencia de Bases , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Alineación de Secuencia , Transactivadores/metabolismo
8.
Curr Biol ; 12(24): 2159-66, 2002 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-12498693

RESUMEN

Covalent modifications of chromatin have emerged as key determinants of the genome's transcriptional competence. Histone H3 lysine 9 (H3K9) methylation is an epigenetic signal that is recognized by HP1 and correlates with gene silencing in a variety of organisms. Discovery of the enzymes that catalyze H3K9 methylation has identified a second gene-specific function for this modification in transcriptional repression. Whether H3K9 methylation is causative in the initiation and establishment of gene repression or is a byproduct of the process leading to the repressed state remains unknown. To investigate the role of HMTs and specifically H3K9 methylation in gene repression, we have employed engineered zinc-finger transcription factors (ZFPs) to target HMT activity to a specific endogenous gene. By utilizing ZFPs that recognize the promoter of the endogenous VEGF-A gene, and thus employing this chromosomal locus as an in vivo reporter, we show that ZFPs linked to a minimal catalytic HMT domain affect local methylation of histone H3K9 and the consequent repression of target gene expression. Furthermore, amino acid substitutions within the HMT that ablate its catalytic activity effectively eliminate the ability of the ZFP fusions to repress transcription. Thus, H3K9 methylation is a primary signal that is sufficient for initiating a gene repression pathway in vivo.


Asunto(s)
Regulación de la Expresión Génica , Histonas/metabolismo , Proteínas Represoras/metabolismo , Células Cultivadas , Factores de Crecimiento Endotelial/genética , Factores de Crecimiento Endotelial/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Lisina/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA