Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125771

RESUMEN

Cardiomyopathy is the predominant defect in Barth syndrome (BTHS) and is caused by a mutation of the X-linked Tafazzin (TAZ) gene, which encodes an enzyme responsible for remodeling mitochondrial cardiolipin. Despite the known importance of mitochondrial dysfunction in BTHS, how specific TAZ mutations cause diverse BTHS heart phenotypes remains poorly understood. We generated a patient-tailored CRISPR/Cas9 knock-in mouse allele (TazPM) that phenocopies BTHS clinical traits. As TazPM males express a stable mutant protein, we assessed cardiac metabolic dysfunction and mitochondrial changes and identified temporally altered cardioprotective signaling effectors. Specifically, juvenile TazPM males exhibit mild left ventricular dilation in systole but have unaltered fatty acid/amino acid metabolism and normal adenosine triphosphate (ATP). This occurs in concert with a hyperactive p53 pathway, elevation of cardioprotective antioxidant pathways, and induced autophagy-mediated early senescence in juvenile TazPM hearts. However, adult TazPM males exhibit chronic heart failure with reduced growth and ejection fraction, cardiac fibrosis, reduced ATP, and suppressed fatty acid/amino acid metabolism. This biphasic changeover from a mild-to-severe heart phenotype coincides with p53 suppression, downregulation of cardioprotective antioxidant pathways, and the onset of terminal senescence in adult TazPM hearts. Herein, we report a BTHS genotype/phenotype correlation and reveal that absent Taz acyltransferase function is sufficient to drive progressive cardiomyopathy.


Asunto(s)
Aciltransferasas , Síndrome de Barth , Cardiomiopatías , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Animales , Ratones , Aciltransferasas/genética , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Masculino , Humanos , Mutación Puntual , Modelos Animales de Enfermedad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fenotipo
2.
J Dev Biol ; 8(3)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962040

RESUMEN

Testicular development starts in utero and maturation continues postnatally, requiring a cascade of gene activation and differentiation into different cell types, with each cell type having its own specific function. As we had previously reported that the Capping protein inhibiting regulator of actin (Cracd) gene was expressed in the adult mouse testis, herein we examine when and where the ß-catenin associated Cracd is initially expressed during postnatal testis development. Significantly, Cracd mRNA is present in both the immature postnatal and adult testis in round spermatid cells, with highest level of expression occurring during the first wave of meiosis and spermatogenesis. In the juvenile testes, Cracd is initially expressed within the innermost region but as maturation occurs, Cracd mRNA switches to a more peripheral location. Thereafter, Cracd is downregulated to maintenance levels in the haploid male germ cell lineage. As Cracd mRNA was expressed within developing round spermatids, we tested its effectiveness as a biomarker of non-obstructive azoospermia using transgenic knockout mice models. Meaningfully, Cracd expression was absent in Deleted in azoospermia like (Dazl) null testis, which exhibit a dramatic germ cell loss. Moreover, Cracd was abnormally regulated and ectopically mis-expressed in Polypyrimidine tract binding protein-2 (Ptbp2) conditional germ cell restricted knockout testis, which exhibit a block during spermatid differentiation and a reduction in the number of late stage spermatocytes coincident with reduced ß-catenin expression. Combined, these data suggest that Cracd is a useful first wave of spermatogenesis biomarker of azoospermia phenotypes, even prior to an overt phenotype being evident.

3.
Gene Expr Patterns ; 34: 119077, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31655130

RESUMEN

Armadillo repeat and Armadillo-like helical domain containing proteins form a large family with diverse and fundamental functions in many eukaryotes. Herein we investigated the spatiotemporal expression pattern of Armadillo-like helical domain containing 4 (or Armh4) as an uncharacterized protein coding mouse gene, within the mouse embryo during the initial stages of heart morphogenesis. We found Armh4 is initially expressed in both first heart field as well as the second heart field progenitors and subsequently within predominantly their cardiomyocyte derivatives. Armh4 expression is initially cardiac-restricted in the developing embryo and is expressed in second heart field subpharyngeal mesoderm prior to cardiomyocyte differentiation, but Armh4 diminishes as the embryonic heart matures into the fetal heart. Armh4 is subsequently expressed in craniofacial structures and neural crest-derived dorsal root and trigeminal ganglia. Whereas lithium chloride-induced stimulation of Wnt/ß-catenin signaling elevated Armh4 expression in both second heart field subpharyngeal mesodermal progenitors and outflow tract, right ventricle and atrial cardiomyocytes, neither a systemic loss of Islet-1 nor an absence of cardiac neural crest cells had any effect upon Armh4 expression. These results confirm that Wnt/ß-catenin-responsive Armh4 is a useful specific biomarker of the FHF and SHF cardiomyocyte derivatives only.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Corazón/embriología , Animales , Diferenciación Celular , Proliferación Celular , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL/embriología , Morfogénesis , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Wnt/genética , Vía de Señalización Wnt
4.
J Cardiovasc Dev Dis ; 6(2)2019 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-31234534

RESUMEN

Mammalian Kiaa1211 and Kiaa1211-like are a homologous pair of uncharacterized, highly conserved genes cloned from fetal and adult brain cDNA libraries. Herein we map the in utero spatiotemporal expression of mKiaa1211 and mKiaa1211L mRNA and their expression patterns in postnatal testis, skin, gastrointestinal, and adipose progenitor tissues. Significantly, mKiaa1211 is present throughout the early stages of mouse heart development, particularly in the second heart field (SHF) lineage as it differentiates from mesenchymal cells into cardiomyocytes. We also show that mKiaa1211 is expressed within several early neuronal tissues destined to give rise to central, peripheral, and sympathetic nervous system structures. Expression profiling revealed that the paralog mKiaa1211L is not expressed during the normal developmental process and that mKiaa1211 expression was noticeably absent from most adult terminally differentiated tissues. Finally, we confirm that a previously uncharacterized CRISPR/CAS-generated mKiaa1211 mouse mutant allele is hypomorphic.

5.
J Neurosci ; 34(17): 6112-22, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760871

RESUMEN

Schwann cells, the myelinating glia of the peripheral nervous system (PNS), originate from multipotent neural crest cells that also give rise to other cells, including neurons, melanocytes, chondrocytes, and smooth muscle cells. The transcription factor Sox10 is required for peripheral glia specification. However, all neural crest cells express Sox10 and the mechanisms directing neural crest cells into a specific lineage are poorly understood. We show here that histone deacetylases 1 and 2 (HDAC1/2) are essential for the specification of neural crest cells into Schwann cell precursors and satellite glia, which express the early determinants of their lineage myelin protein zero (P0) and/or fatty acid binding protein 7 (Fabp7). In neural crest cells, HDAC1/2 induced expression of the transcription factor Pax3 by binding and activating the Pax3 promoter. In turn, Pax3 was required to maintain high Sox10 levels and to trigger expression of Fabp7. In addition, HDAC1/2 were bound to the P0 promoter and activated P0 transcription. Consistently, in vivo genetic deletion of HDAC1/2 in mouse neural crest cells led to strongly decreased Sox10 expression, no detectable Pax3, virtually no satellite glia, and no Schwann cell precursors in dorsal root ganglia and peripheral nerves. Similarly, in vivo ablation of Pax3 in the mouse neural crest resulted in strongly reduced expression of Sox10 and Fabp7. Therefore, by controlling the expression of Pax3 and the concerted action of Pax3 and Sox10 on their target genes, HDAC1/2 direct the specification of neural crest cells into peripheral glia.


Asunto(s)
Diferenciación Celular/fisiología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Cresta Neural/metabolismo , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Células de Schwann/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Ratones , Cresta Neural/citología , Células-Madre Neurales/citología , Oligodendroglía/citología , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Células de Schwann/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA